PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling coupled electric field and motion of beam of ionic polymer-metal composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a mathematical model of electromechanical transduction of Ionic Polymer-Metal Composites is presented. The aim of the research was to create a physics-based, geometrically scalable model to use in control systems. The relation between actuating voltage and the tip displacement was described with a transfer function. The model is derived from the basic physical properties of re-searched materials. To calculate the final transfer function, two impedance models are considered – with and without neglecting the re-sistance of the metal electrodes. In this paper, the model with non-zero electrode resistance is calculated. Later, the model is simplified (taking the physical properties into account) and the numerical values based on the parameters of the samples are calculated. The simpli-fications allow the model to predict the response to low-frequency sine wave actuation. The frequency-domain characteristics of the sam-ples were created experimentally and compared to the model. The results have proven the accuracy of the model.
Rocznik
Strony
38--43
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Process Control
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Process Control
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Process Control
Bibliografia
  • 1. Aureli M., Prince C., Porfiri M., Peterson S. D. (2010), Energy harvesting from base excitation of ionic polymer metal composites in fluid environments, Smart Materials and Structures, 19(1), 15003.
  • 2. Bahramzadeh Y., Shahinpoor M. (2011), Dynamic curvature sensing employing ionic-polymer-metal composite sensors, Smart Materials and Structures, 20(9), 94011.
  • 3. Chen Z., Tan, X. (2008), A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators, Mechatronics, IEEE/ASME Transactions on, 13(5), 519–529.
  • 4. Farinholt K. M. (2005), Modeling of dynamic behaviors of ionic polymer transducers for sensing and actuation, Virginia Polytechnic Institute.
  • 5. Kwaśniewski J., Dominik I. (2011), Laboratory Research on Mechanical Features of Ionic Polymer Metal Composite IPMC, Acta Mechanica et Automatica, 5(3), 65-72 (in polish)
  • 6. Nemat-Nasser S. (2002), Micromechanics of actuation of ionic polymer-metal composites, Journal of Applied Physics, 92(5), 2899.
  • 7. Nemat-Nasser S., Li J. (2000a), Electromechanical response of ionic polymer-metal composites, Journal of Applied Physics, 87, 3321–3331.
  • 8. Nemat-Nasser S., Li J. Y. (2000b), Electromechanical response of ionic polymer-metal composites, Journal of Applied Physics, 87(7), 3321.
  • 9. Pugal D., Jung K., Aabloo A., Kim, K. J. (2010), Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives, Polymer International, John Wiley & Sons, Ltd., 59(3), 279–289.
  • 10. Shahinpoor M., Kim K. J. (2001), Ionic polymer-metal composites: I. Fundamentals, Smart Materials and Structures, 10(4), 819.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34cd8ec2-c722-4d40-a7fc-11f901118903
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.