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Abstract: In this paper, a mathematical model of electromechanical transduction of Ionic Polymer-Metal Composites is presented. The aim 
of the research was to create a physics-based, geometrically scalable model to use in control systems. The relation between actuating 
voltage and the tip displacement was described with a transfer function. The model is derived from the basic physical properties of re-
searched materials. To calculate the final transfer function, two impedance models are considered – with and without neglecting the re-
sistance of the metal electrodes. In this paper, the model with non-zero electrode resistance is calculated. Later, the model is simplified 
(taking the physical properties into account) and the numerical values based on the parameters of the samples are calculated. The simpli-
fications allow the model to predict the response to low-frequency sine wave actuation. The frequency-domain characteristics of the sam-
ples were created experimentally and compared to the model. The results have proven the accuracy of the model. 
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1. INTRODUCTION 

The Ionic Polymer-Metal Composites (IMPC) are a class 
of smart materials, which can be used in various technical applica-
tions. They can be applied as actuators, sensors, energy genera-
tors or self-sensing materials.  

The IPMC can operate in two modes – sensing and actuating. 
The material consists of two layers of noble metal and ion-
conducting polymer between them. The material is also filled with 
particles of a polar solvent (i.e. water), which create clusters that 
move freely inside the polymer layer (Shahinpoor and Kim, 2001). 
Such a composite is capable of bending with great strain. The 
applied voltage causes the cations with attached solvent particles 
to gather near the negative potential. This causes a local increase 
in density and bends the strip towards the positive electrode.  

Such materials have numerous applications in automation, 
mechatronics, biomedical sciences, military science and enter-
tainment (Pugal et al., 2010). A reverse effect is also present – 
mechanical deformation causes electrical voltage to appear on the 
electrodes. In this case, the material can be used as an energy 
generator, e.g. in energy harvesting systems (Aureli et al., 2010) 
or displacement sensor (Bahramzadeh and Shahinpoor, 2011). 
Actuation model will be presented in this paper. 

2. DERIVATION OF THE MODEL OF IPMC 

Presented model is a generalization of the work of Farinholt, 
(2005); Sia Nemat-Nasser and Li (2000), utilizing a surface re-
sistance model and Laplace transform representation. The result-
ing transfer functions in their precise, nonlinear form have very 
high computational complexity, thus they should be reduced 
to a lower order linear transfer function to enable the use in con-
trol systems. 

Tab. 1. Symbols, their values, units and descriptions 
             (Chen and Tan, 2008) 

Symbol Value Unit Description 

  96487 C/mol Faraday constant 

  3.3143 J/(mol·K) Gas constant 

  
  0.37 Ωm Resistivity across  

the IPMC (x axis) 

         
 
 Pa Young's modulus 

  
  22.3 Ωm 

Resistivity of the 
electrode in z direction 

  
        

  
 Ωm 

Resistivity of the 
electrode in x direction 

         
  

 m2/s 
Ion diffusion  
coefficient 

   1091 mol/m3 Anion concentration 

          
  

 F/m 
Effective dielectric 

constant of the poly-
mer 

   0.129 J/C 
Stress-charge density 
correlation coefficient 

   28.9 1/s 
Angular frequency  
of undamped beam 

oscillations 

ζ 0.1 - 
Damping ratio  

of beam oscillations 

  300 K Temperature 

  0.01 m Width of the sample 

  0.04 m Length of the sample 

  200 µm 
Thickness of the 

sample 

The derivation of the model is based on the work of (Chen and 
Tan, 2008), with a different simplification method. The model was 
later tested experimentally. 
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2.1. Partial differential equations 

Following equations were primarily presented by(Farinholt, 
2005). Distribution of charges in the polymer layer is governed 
by equations(1) and (2). 

  
 

  
      (1) 

        (     ) (2) 

where: D – electrical displacement, E – electric field,   - electric 

potential,   – charge density,   - cation concentration. 
Later, following the Farinholt's calculations we get a partial dif-

ferential equation (3), that models the spatial and temporal varia-
tion in charge density due to an initial charge distribution. 

  

  
  

   

   
 

     

    
(      )    (3) 

2.2. Electrical impedance model 

Based on an assumption made by Nemat-Nasser and Li (Sia 
Nemat-Nasser and Li, 2000), that stressσ is proportional to the 
charge density  and stress-charge density correlation coefficient 
   

      (4)  

the electrical impedance model will be used in the creation 
of control-oriented model. The value of the stress-charge density 
correlation coefficient   depends on the effective dielectric 
constant of the composite and geometrical parameters of the ion 
clusters inside an ionomeric layer (S Nemat-Nasser and Li, 2000). 

 
Fig. 1. Geometrical model of IPMC cantilever beam 

To simplify the notation, the constants are aggregated into fol-
lowing equation (5): 

  
     

    
(      ) (5) 

Later, a Laplace transform is applied to equation (3), taking into 
account that   is independent from y. 

  (     )   
   (     )

      (     )    (6) 

Next,   ( )  (   )   is defined. Assuming a symmetrical 
charge distribution in y axis, a general solution of equation (6) is 
presented in equation (7). 

 (     )     (   )     ( ( ) ) (7) 

where   (   ) depends on boundary values of PDE (3). Based 
on equations (7), (1) and (2), electric field (8) and potential (9) can 
be calculated: 

 (     )     (   )
    ( ( ) )

   
 ( )

   (   ) (8) 

 (     )      (   )
    ( ( ) )

   
 ( )

 

   (   )    (   ) 

(9) 

Two cases of boundary conditions are considered – with and 
without consideration of electrode resistance. In both cases rela-
tions can be found between tip displacement and applied voltage. 

2.3. Model without the resistance of the electrodes 

In this case, the electrodes of the polymer are considered to 
be ideal conductors. Electric potential is constant throughout the 
two surfaces and equals: 

 (      )  
  ( )

 
         (10) 

Next, the constants of equations (8) and (9) are calculated 
from equation (6), and the value of electric force is calculated: 

 (     )   
 ( )

  

 ( )(   )

  ( )      ( ( ))
         (11) 

where:  ( )   ( ) . Charge is calculated by an integral of the 
electrical displacement D (12). 

 ( )  ∫ ∫  (     )     
 

 

 

 

 ∫ ∫    (     )     
 

 

 

 

 
  (12) 

The impedance of the IPMC is derived from: 

  ( )  
 ( )

  ( )
 

   (     ( ( )  ( )⁄ )

  (   )
         (13) 

where:         ⁄ , and is considered to be the capacitance 
of the composite. 

2.4. Model with the resistance of the electrodes 

Surface of the electrode of the IPMC consists of nanoparticles 
that are created during chemical reduction of salts of noble metals 
such as platinum. This has some influence on the surface re-
sistance of the IPMC, which has to be taken into the model. Equa-
tions (14) and (15) describe the relations between   (   ), 
  (   ),   (   )and   (   ). 

   (   )

  
  

  
 

 
  (   ) (14) 

   (   )

  
  (  (   )    (   )) (15) 

For    ,    (   )    ( )  ⁄ , thus boundary condi-

tions can be calculated from(16) 

 (      )    (   )    (   )   
  ⁄  (16) 

  



Ireneusz Dominik, Filip Kaszuba, Janusz Kwaśniewski 
Modelling Coupled Electric Field and Motion of Beam of Ionic Polymer-Metal Composite 

40 

 

Fig. 2. Model of the IPMC with surface resistance (Chen and Tan, 2008) 

By using (14) and (16), we get: 

 (      )  
  ( )

 
 ∫

  
 

 
  (   )   

  
 

 
  (   )

 

 
 (17) 

Unknowns from the general equation (9) can be now calculat-
ed. The key assumption of modelling IPMC is that the ions do not 

pass between polymer and metal, thus total ion flux for     and 
     equals zero (18). 

(
   

    
    

    
(      )

  

  
)
    

   (18) 

 
Based on (17) and (11), while taking the boundary condition 

(18) into account, the electric force in this case is: 

 (     )  
 (     )

 

 ( )(   )

  ( )      ( ( ))
 (19) 

The current in the negative part of the x axis is defined as pos-
itive. Considering the ion movement, 

  (   )      (     )        (     ) (20) 

and 

  (   )  
  (   )   (   )

   

 

 (21) 

Using the equations (19), (20) and (21), the differential equa-

tion (16) can be solved for   (   ) with a boundary condition 
  (   )   . Total current  ( )    (   ), thus the transfer 
function for the impedance is presented in (22): 

  ( )  
 ( )

 ( )
 

 √ ( )

 ( )     (√ ( ) )
 (22) 

where: 

 ( )  
 ( )

(  
    ( )

 
)
 

  

  
 
 (23) 

 ( )  
  

 

 
 ( ) (24) 

 ( )  
     ( )(   )

 (  ( )      ( ( )))
 (25) 

It should be noted, that   ( ) is consistent with   ( ) 
for  

   ,   
    and   

   . 

2.5. The transfer function of the IPMC cantilever beam 

The model was later developed to suit the movement of canti-

lever beam.Firstly, the transfer function  ( ) will be calculated. It 
describes the connections between the tip displacement  (   ) 

and actuating voltage  ( ), while ignoring the mechanical proper-
ties of the beam itself. Equation (26), describes the stress 
 (     ), based on assumption (4): 

 (     )       (   )     ( ( ) ) (26) 

The constant   (   )is calculated from the impedance mod-
el. While considering the model with surface resistance, we get 
the bending moment: 

 (   )  ∫  
 

  
 (     )    = 

 ∫  
 

  
      (   )     ( ( ) )   = 

  
       ( ( )     ( ( ))) (     )

(  ( )      ( ( )))
 (27) 

It is assumed that an axial force does not appear and the 
charge density distribution is described by equation (7). From the 
linear beam theory(Mohammadpour et al. 2012) and equation 
(17): 

   (   )

   
 

 (   )

   

  
       ( ( )      ( ( ))) (     )

  (  ( )       ( ( )))
  

  
      ( ( )     ( ( )))

   (  ( )      ( ( )))
 
 ( )  ∫

   
 

  (   )  
 
 

  
    ( )

 

  (28) 

where: Y is Young's modulus of the beam, and        ⁄  is a 
secondary moment of area for the cross section of the beam. 
When above equation is solved with boundary conditions 
 (   )    and  (   )   , we get: 

 (   )   

  
      ( ( )     ( ( )))

   (  ( )      ( ( )))
 
 ( )    ∫ ∫ ∫

   
 

  (   )          
  
 

 
 

 
 

  
    ( )

 

 (29) 

Based on these calculations, we get: 

 ( )    ∫ ∫ ∫
  

 

 
  (   )         

   

 

 

 

 

 
     ( ) ( )

 (30) 

where:  

 ( )   
      (√ ( ) )      (√ ( ) √ ( ) )

 ( )  
. (31) 

Finally, the transfer function  ( )  
 (   )

 ( )
 of the IPMC 

is given by equation (32): 

 ( )   
        ( ( )     ( ( )))

   (  ( )      ( ( )))
 

  ( )

  
    ( )

 

 (32) 

To make a complete description of the behaviour of the IMPC, 
the H(s) transfer function has to be used in serial connection with 
the transfer function, which describes the mechanical properties 
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if the beam. The beam is considered to be a second order oscilla-
tory system, described by transfer function (33): 

 ( )  
  

 

           
  (33) 

The final transfer function is given by: 

  ( )   ( )   ( ) (34) 

2.6. Simplification of the transfer function 

The transfer function presented in equations (32) and (33) de-
scribe the behaviour of the polymer accurately, but is far too 
complicated to be implemented in e.g. control systems. Therefore, 
the function will be simplified using mathematical transformations 
and values of physical properties from table 1. The values that 
could not be measured were taken from previous author's work 
(Kwaśniewski and Dominik, 2   ; Chen and Tan, 2008). First, the 

transfer function  ( ) is split into three following transfer func-
tions: 

 ( )   ( )   ( )   ( ) (35) 

where: 

 ( )   
        ( ( )     ( ( )))

   (  ( )      ( ( )))
 (36) 

 ( )  
 

  
    ( )

 

 (37) 

Based on the knowledge of physical properties of the sam-

ples, it is noticed, that | ( )|            . It is also as-

sumed, that for low frequencies (<100Hz)      ( ( ))   . This 

allows to substitute the function  ( ) with a constant  . 

 ( )   √
 

 
   (38) 

This leads to following approximate solutions: 

 ( )   
        (   )

   (    )
 (39) 

 ( )  
      (   )

 (    )
 (40) 

 ( )  
  (    )

  
     (   )  (    )

 (41) 

The Taylor series approximation of sinh and cosh functions is 
used to simplify X(s) part of the transfer function. 

 ( )  
  ∑ (

     

(    ) 
 
   

   
) 

   

∑
     

   
 
   

, (42) 

where:   √ ( ) .  

This approximation works well for low-frequency responses 
of the beam. Such approximated model is still a physics-based 
model, so it is geometrically scalable. 

3. NUMERICAL VALUES OF THE MODEL  
AND EXPERIMENTAL RESULTS 

Testing of the model was performed on laboratory samples 
of ionic polymer-metal composites. The sample was working 
in a cantilever beam setup, and its tip displacement was meas-

ured. The actuating signal was generated by National Instruments 
NI9263 card. 

Due to low current values (10 mA) generated by the card, 
avoltage follower was based on an operational amplifier was used 
as a current amplifier to power the composite. Displacement 
measurements were performed by laser sensor. Measurements 
from the laser sensor were acquired by National Instruments 9215 
card. Voltage supplied to the sample was also measured, to cal-
culate the phase offset.Data acquisition and signal generation was 
controlled by a PC based system with LabView software. 
The whole measuring circuit is shown in Fig. 3. 

 
Fig. 3. Block diagram of the research stand 

 
Fig. 4. Signal generation, data acquisition and calculations  
           of magnitude and phase offset in LabView 

3.1. Numerical values of transfer functions 

After substitution of numerical values to equations (39) 
and (41): 

 ( )  
     

                     (43) 

and 
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 ( )  
            

                          
 (44) 

The calculation of X(s) is based on solutions of equations (23), 

(24), (25) and   √ ( ) . Second order Taylor polynomial is 

used. The final form of H(s) transfer function consists of 45th 
order polynomials in nominator and denominator, with coefficients 
ranging from 10-83 to 1097. Due to its complexity, the transfer func-
tion was simplified by using reduce function from Robust Control 
Toolbox of MATLAB software, which produced a following trans-
ferfunction, describing the electrochemical processes behind the 
actuation: 

 ( )  
                 

                
 (45) 

The second part of the transfer function, describing the me-
chanical properties of the beam, is calculated using the parame-
ters from table 1. 

 ( )  
   

            
 (46) 

The final transfer function, which relates the tip displacement 
with actuating voltage is given in equation (47) 

 ( )   ( )   ( )  
             

                                           (47) 

3.2. Time-domain analysis of the model 

The Ionic Polymer-Metal Composites are known to respond 
more predictably to AC actuation(Nemat-Nasser, 2002). DC re-
sponse depends on number of factors, such as time from the last 
actuation, hydration, time of continuous actuation etc. Previous 
studies (Kwaśniewski and Dominik, 2   ) have shown, that DC 
actuation of the IPMC is a strongly nonlinear and time-varying 
phenomenon, therefore cannot be described by Laplace transfer 
function. 

 
Fig. 5. Step response of the transfer function P(s) (obtained from Eq.47) 

This facts, and the assumptions made in section 2.6 of this 
paper prove, that the described model cannot be used to predict 
the step response of the IPMC. Step responses of the model  
(Fig. 5) and the sample (Fig. 6.) to the actuation voltage of 3,78V. 

Fig. 6. Step response of the samples 

3.3. Frequency-domain analysis of the model 

The Bode plot (Fig. 3) of the transfer function (47) was plotted 
using MATLAB. The observed peak indicates the resonance 
frequency of the cantilever beam. 

 

Fig.7. Bode magnitude plot of the transfer function P(s) (from Eq.47) 

 

Fig. 8. Bode phase plot of the transfer function P(s) (from Eq.47) 

3.4. Experimental frequency-domain analysis of the samples  

The samples of the IPMC were mounted horizontally to com-
pensate for gravity. The sample was placed in front of an angular 
displacement scale for visual inspection of the movement 
and different experiments, conducted with image acquisition 
system. 

The frequency-domain analysis was conducted by measuring 
the response to a sine wave voltage signal with different frequen-
cies, varying from 0,1 to 1000Hz. Three repetitions were conduct-
ed for each frequency and two samples were tested. The results 
presented here are mean values from the three repetitions. Both 
gain and phase shift were calculated online by LabView software 
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(Fig. 4).Comparison of frequency domain plots of the model 
and measurements is presented in the figure 10. Values of the 
gain of the sample for 1000Hz was lower than the level of noise 
generated by the laser sensor, so the values in the figure are 
approximate. 

 
Fig. 9. Mounted IPMC sample during actuation 

 
Fig. 10a. Comparison of Bode magnitude plots  
                of the model simulation and the samples 

 
Fig. 10b. Comparison of Bode phase plots  
                of the model simulation and the samples 

4. CONCLUSIONS  

The mathematical model of electromechanical transduction 
of Ionic Polymer-Metal Composites was presented in the paper. 
The aim of the research was to create a physics-based, geometri-

cally scalable model to use in control systems. The relation be-
tween actuating voltage and the tip displacement was described 
with a transfer function. The model was derived from the basic 
physical properties of researched materials.  

As seen in figure 10, the model is fitted very well to the exper-
imental data. The error of about 5% can be caused by strong 
nonlinearities of the IPMC actuators and simplification of the 
transfer functions. Furthermore, the samples are highly sensitive 
to hydration and change their properties with time. The experi-
mental value of mechanical resonance peak (ca. 30 Hz) is con-
sistent with assumed parameters, which proofs the quality of the 
model. To calculate the final transfer function, two impedance 
models were considered – with and without neglecting the re-
sistance of the metal electrodes. Additionally, the model with non-
zero electrode resistance was calculated. Later, the model was 
simplified (taking the physical properties into account) and the 
numerical values based on the parameters of the samples were 
calculated. The simplifications allow the model predict the re-
sponse to low-frequency sine wave actuation. The frequency-
domain characteristics of the samples were created experimental-
ly and compared to the model. The results have proven the accu-
racy of the model. 

Further research will focus on developing the presented in the 
paper model into the model which will describe the time response 
to DC voltage actuation. 
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