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Abstract
To achieve enhanced accuracy of fabric representation and defect detection, an innovative approach using a sparse dictionary 
with small patches was used for fabric texture characterisation. The effectiveness of the algorithm proposed was tested through 
comprehensive characterisation by studying eight weave patterns: plain, twill, weft satin, warp satin, basket, honeycomb, compound 
twill, and diamond twill and detecting fabric defects. Firstly, the main parameters such as dictionary size, patch size, and cardinality 
T were optimised, and then 40 defect-free fabric samples were characterised by the algorithm proposed. Subsequently, the impact 
of the weave pattern was investigated based on the representation result and texture structure. Finally, defective fabrics were 
detected. The algorithm proposed is an alternative simple and scalable method to characterise fabric texture and detect textile 
defects in a single step without extracting features or prior information.
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1.  Introduction 

Fabric texture representation plays a 
vital role in quality control procedures 
and automatic inspection, like automatic 
identification of weave density inspection 
[1], and detection of abnormal regions[2, 
3]. A considerable number of approaches 
have been proposed for fabric texture 
analysis. These methods can be categorised 
into three types: spectral, statistical, and 
model-based [4]. The majority of these 
approaches focus on extracting useful 
texture features [5]. However, conducting 
an exhaustive survey of all texture features 
and then identifying a general feature 
that adapts to various types of fabrics are 
impractical. Moreover, no straightforward 
way can be used to judge whether the 
elements are suitable [6]. To avoid the 
shortcomings of fabric feature extraction, 
many researchers have adopted dictionary 
learning based on sparse representation to 
characterise fabric texture.

Dictionary learning based on sparse 
representation has been widely used 
in image compression [7], face feature 
recognition [8], and so on. Nevertheless, 

in the textile field, dictionary learning-
based sparse representation is only used to 
detect defects. For example, Zhou et al. [9] 
presented a learned dictionary algorithm 
based on sparse representation. Their 
experimental results showed robust and 
improved performance with high precision 
and acceptable recall rates. Zhu et al. [10] 
used defect-free fabric images to build an 
overcomplete basis set via sparse coding. 
Then, the projections of a defect-free 
fabric patch in the basis set were regarded 
as original features. The characteristics 
of the test fabric were compared with the 
average of the original features, and their 
experimental results demonstrated that the 
algorithm proposed could detect defects 
on twill, plain, gingham, and striped fabrics 
efficiently. Therefore, fabric surface texture 
reconstruction is commonly adopted due 
to its consideration of the measurement 
characteristics of fabrics and the quality 
assessment of essential products.

Therefore, a novel method based on 
sparse representation for fabric texture 
analysis was designed. The method 
proposed was applied in two aspects: 
fabric characterisation and defects 

detection. For regular fabric texture, 
woven fabric parameters like the weave 
repeat were investigated to determine 
the impact on texture characterisation. In 
addition, the method proposed was also 
validated by inspecting fabric defects. 
The structure is illustrated in Figure 1.

2.  Materials and methods

To demonstrate the efficiency of our 
algorithm, the approach was applied to 
investigate the effect of the fabric weave 
repeat on texture reconstruction and 
detecting fabric defect samples. Firstly, 
eight weave repeats including plain, 
twill, honeycomb, warp satin, weft satin, 
basket, diamond twill, and complicated 
twill, were woven to explore how the 
weave pattern affects fabric texture 
representation. Aside from the weave 
pattern, other conditions, such as the 
material, weave density, and yarn count, 
were the same. Forty fabric samples, 
20tex*2 folded yarns (cotton), were used 
in the warp and weft and then woven on 
a Sakura rapier loom (a TNY101B-20), 
which was semiautomatic. Secondly, 
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fabric defects were detected. Among six 
kinds of samples, four were captured 
from the production line. 

2.1.  Dictionary learning 
based on sparse representation 

Signal, 1 2 ,[ , , ],nY y y y=  ,∈ m
iy R  which 

included vectors of dimensionality m and 
considered the following optimisation 
problem, was obtained. This problem 
described the given signal Y as the 
sparsest representation A over the 
dictionary D and aimed to find proper 
representations and the dictionary jointly 
(Equation 1),

  2

2,
min
D A

n

i
Y DA

=

−∑
1

 Subject to 
0
≤ia T                   (1)

where T is a positive integer, which controls 
the degree of sparsity in A; pseudo-norm

0⋅ counts the number of non-zero entries 
in the formula. In Equation 1, dictionary 
D and coefficient matrix A are unknown. 
This means it is NP-hard, and a natural 
approach to a solving the problem is 
to alternate between two variables, 
minimising one while keeping the other 

one fixed. For  the sparse solution, we 
computed the coefficient matrix A by 
using any pursuit algorithm and allowing 
each coefficient vector to have no more 
than T. Some efficient methods for 
approximate solutions, such as matching 
pursuit (MP) and basis pursuit (BP), are 
available. 

2.2.  Fabric characterisation 

For an arbitrary fabric image, 
1 2 ,[ , , ],nX x x x=  ,m

ix R∈  fabric texture 
characterisation can be formulated by 
Equation 2. 

2

2,
min iA

n

D i
ix Da

=

−∑
1

  0s.t.  1i T i nα ≤ ≤ ≤,  (2)

The algorithm proposed included two 
parts: sparse coding and reconstruction. In 
the sparse coding part, the sample image 
was divided into small patches, and then 
every small patch was decomposed by 
fixing the dictionary to obtain the sparse 
coefficient matrix. The Discrete Cosine 
Transform dictionary (DCT) [12] was 
highly suitable for period signals because 
the woven fabric texture exhibited 

homogeneous subpatterns and a stable 
cycle. In this work, Orthogonal Matching 
Pursuit (OMP)[11] was adopted because 
of its simplicity and efficiency.     

When the value 2

2
X A− DDA 2

2
X A− D  reaches the 

predefined representation error tolerance, 
Â can be the output (Equation 3). 

2

2
ˆ argminA X A= − DDA 2

2
ˆ argminA X A= − D

                          
(3)

In the reconstruction part, an approximated 
image could be obtained using the product 
of the dictionary and coefficient matrix 
(Equation 4). 

                           DA=ˆ ˆX                                     (4)

2.3.  Small image patch 

In the sparse reconstruction, we represented 
the small patches instead of the entire image 
due to the computation burden. An image 
Z with a size of P×Q was obtained. 
Supposing that the patch size was l×
l, the total number of patches was U= 
(P/l)×(Q/l) without overlaps [13], and V= 
(P-l+1)×(P-l+1) with overlaps l (Figure 2).  
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Fig. 1. Procedure of fabric characterisation and defect detection
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In this framework, the sample was 
divided in different ways according to the 
aims.

2.4.  Measurement of fabric 
texture period

Besides the description above, the influence 
of weave patterns on fabric texture 
reconstruction was investigated  using 
a novel method to measure the fabric 
texture period. For an arbitrary grey level 
fabric image f(i, j) m nR ×∈ , all of its rows 
are connected end-to-end to form a one-
dimensional row vector Xr

mnR∈ ,  and 
all its columns are connected end-to-end 

to form a one-dimensional row vector 
Yc

mnR∈ . For Xr and Yc, their  Fourier 
frequency domain amplitude curves

rXP
and 

cYP  under the different periods can 
be plotted by one-dimensional Fourier 
transformation. Then we introduced the 
calculation process for the fabric weft 
cycle. Firstly, the value d1, corresponding 
to the maximum peak point in the 
frequency-domain amplitude curve, is 
extracted as the main period. Secondly, 
the value d2, corresponding to the 
maximum peak point in the frequency-
domain amplitude curve, is extracted 
as the second period. Thirdly, the final 
period p for the weft can be obtained by 
Equation 5:

( ) ( )
( ) ( )

( )
s

1 2 1 2

1 2 1 2 1 2

, , / , ;

, , / ,

( ) , 1, 2
( )

( ),

where, DMF
m n d

s
s

r r s
i

d if min d d max d d m n

min DMF DMF min d d max d d m n

X i X i

p
el e

d s
m

s

n d

× −

=

> ×

≤ ×

= − +

= 

=



× −



∑

1

1

1

       
(5)

2.5.  Performance evaluation 

In this study, we could measure the 
likeness between an arbitrary original 
fabric image X of M × N size and its 
approximated version X̂ . The structural 
similarity index (SSIM) [14] and peak 
signal-to-noise ratio (PSNR) [15] were 
adopted as similarity measurements to 
evaluate the reconstructed image quality. 
The perceptual quality metric SSIM was 
introduced first. Its definition is shown in 
Equation 5,
 

ˆ̂̂̂SSIM( , ) [ ( , )] [ ( , )] [ ( , )]α β γ=X X l X X c X X s X X
                   
(5)  

where the dynamic range of SSIM is [−1, 
1]. The higher the SSIM value is, the 
better the reconstructed image will be. 
The other index was PSNR, a common 
metric for evaluating the intensity 
similarity of a recovered image. Its 
definition is shown in Equation 6.

( ) ( )( )( )
( )

2

21 1
10

ˆ, ,
MSE 255, PSNR 10 ( / MSE)

M N

i j
X i j X i j

log
M N

= =

−
= = ⋅

×

∑∑
         
(6)  

From Equation 6, PSNR is a positive 
quantity, signifying how similar the 
original and reconstructed images are. Its 
trend is similar to that of SSIM.

3.  Results and discussion

To avoid the influence of illumination 
conditions and other uncontrollable 
factors, the fabric samples were scanned 
using a Cano Scan 9000F Mark II in the 
grayscale mode, with auto scan, and at a 
resolution of 600 dpi. The images were 
cropped to a size of 256×256 pixels 
(shown below) with 256 grey levels. 
All experiments were implemented in 
MATLAB R2014a on a computer with 
a 1.8 GHz processor and 6 GB memory. 
The method proposed was applied to 
investigate the impact of the fabric weave 
repeat on texture representation and to 
detect fabric defects based on a variety 
of fabric samples (48 fabric samples), 
including 40 defect-free fabric images 
of different weave patterns and eight 
defective samples.
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Fig. 2. Flow chart of a small patch partition

Fig. 3. Visual reconstruction samples with different dictionary sizes: (a) reconstruction of 
plain fabric image; (b) reconstruction of twill fabric image. 
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3.1.  Fabric texture 
representation

3.1.1.  Selection of dictionary size 

From Equation 1, the coefficient matrix 
A was obtained using signal Y and 
dictionary D via OMP. Therefore, the size 
of D exerted a great effect on the fabric 
texture reconstruction. The influence of 
the dictionary size k on the fabric texture 
reconstruction should be explored. We 
selected five different sizes k with values 
of 16, 64, 100, 144, and 256. In the visual 

aspect, the reconstructed fabric samples 
looked the same as the original ones for 
k=256 (Figure 3). 

In the quantity aspect, as the dictionary 
size k increased, the two quantitative 
indexes presented a sharp increase 
(Figure 4) at the beginning, and then 
they increased slowly. Until k=256, the 
values of PSNR and SSIM reached the 
maximum. For example, the SSIM value 
for twill was 0.9. Consequently, the 
dictionary size selected was 256 because 
it had the best performance.

3.1.2.  Selection of a small patch 
size and the cardinality of sparse 
representation 

In the framework, the algorithm was operated 
on an image patch because of the higher 
computation cost for the entire image. Woven 
fabric is made of a cross combination of 
warp and weft yarns following a weave 
pattern. In general, partitioning images 
into small patches is important. Therefore, 
three different patch sizes, 8×8, 16×16, 
and 32×32, were explored for fabric 
texture reconstruction. We also tested two 
samples of T =1, 2, 3, 4, 5, 6, 7, 8, 9, 10 to 
investigate the influence of the cardinality 
T on fabric texture characterisation. 
Specifically, a fabric sample was divided 
by the three different patch sizes, and 
different values of T were used to 
reconstruct the sample. The performance 
was evaluated concerning PSNR and 
SSIM. The two samples adopted are 
shown in Figures 2a and 2b. 

The test results of the fabric samples 
are illustrated in Figure 5, where the 
dictionary size was 256. From Figure 5, 
the difference is not evident for the two 
samples, and the trends are remarkably 
similar. For the same dictionary size, 
the smaller the patch size was, the more 
texture details were reconstructed. 

Thus, the quality of the reconstructed one 
and the similarity to the original sample 
for 8×8 were better than those for the 
other patch sizes. Generally, patch size 
8×8 presented the best performance in 
terms of PSNR and SSIM for fabric 
texture representation; hence, it was 
selected to characterise fabric texture. 
Given that the approach proposed was 
based on sparse representation, the size 
of the cardinality of the sparse coefficient 
matrix exhibited an enormous effect on 
our method. When T was smaller than 
6, PSNR and SSIM had fast growth, 
especially for 8×8 and 16×16. When T=6, 
the PSNR for the plain fabric was higher 
than 35 dB for the test samples, and the 
SSIM could reach approximately 0.96. 
As the value of T increased, namely, T >6, 
the rising rate of the two indexes slowed 
down, and the SSIM curves became 
almost convergent. The computation 
cost sharply increased with the rise in 

0 50 100 150 200 250 300
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 

 

SS
IM

Dictionary size

 Plain
 Twill

(a) (b)

Fig. 4. Representation result of the fabric samples with different dictionary sizes k: 
(a) PSNR; (b) SSIM

0 2 4 6 8 10
24
26
28
30
32
34
36
38
40
42
44

 

 

  8×8
 16×16
 32×32

PS
N

R

Sparse cardinality T

(a)

0 2 4 6 8 10
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

  8×8
 16×16
 32×32

 

 

SS
IM

Spsrse cardinality T
(b)

0 2 4 6 8 10
22
24
26
28
30
32
34
36
38
40
42   8×8

 16×16
 32×32

 

 

PS
N

R

Sparse cardinality T

(c)

0 2 4 6 8 10
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

  8×8
 16×16
 32×32

 

SS
IM

Spsrse cardinality T
(d)

Fig. 5. Representation results for two fabric samples: (a) and (b) are plain fabric’s PSNR 
and SSIM for different patch sizes with various sparse cardinality T; (c) and (d) are twill 
fabric’s PSNR and SSIM for different patch sizes with various sparse cardinality T

file:///I:/SCIENDO/Arty/Do%20zrobienia%20word/ftee-2022-0020/javascript:void(0);


Fibres and Textiles in Eastern Europe

36 37

cardinality T. To determine the value 
of T, we considered the reconstruction 
performance and computation cost. In 
this regard, the final value of T =6 was 
adopted for fabric texture representation.

In this part, we represented the original 
fabric texture with a patch size of 8×8 and 
T=6. To evaluate the performance of output 
images, we compared the reconstructed 

samples with the original ones in visual 
and quantity aspects. Subsequently, we 
explored the relationship between fabric 
texture representation and weave pattern 
and then classified the fabric samples. In 
the visual aspect, we observed the original 
fabric samples. From the 40 samples 
we chose one for every weave repeat  
(Figure 6). 

The reconstructed images for every weave 
pattern looked the same as the original 
fabrics. Nonetheless, the reconstructed 
images looked smoother and clean 
(Figure 6). This result could be attributed 
to the fact that the algorithm proposed 
could efficiently remove noise or blur, 
which might be caused by some inevitable 
factors, such as illumination and ash. In 
the quantity aspect, the values of SSIM for 

Fig. 6. Original fabric sample with different weave patterns: (a) plain, (b) twill, (c) weft satin,(d) warp satin, (e) basket weave, (f) 
honeycomb, (g) compound twill,  (h) diamond twill

Fig. 7. Reconstructed fabric samples: (a) plain, (b) twill, (c) weft satin, (d) warp satin, (e) basket weave, (f) honeycomb, (g) 
compound twill, (h) diamond twill.
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all the test samples were greater than 0.81 
(Figure 7). Therefore, the experimental 
results demonstrated that the reconstructed 
images were identical to the original ones 
in visual and quantity aspects. 

3.1.3.  Effect of the weave 
pattern on woven fabric texture 
representation

To explore the relationship between 
weave pattern and texture presentation, 
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Fig. 9. Fabric defect detection result
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we calculated the representation results 
of all the fabric samples (every weave 
pattern with five samples) in terms of 
PSNR and SSIM (Figure 8). 

From Figure 8 it can be seen that every 
weave pattern might have diverse results; 
but the plain fabric generally had the best 
performance in the quality of reconstructed 
images regarding PSNR. The basket weave 
had the best similarity to the original fabric 
sample in terms of SSIM. The average 
PSNR for the basket weave was next to 
that for the plain one, and the SSIM for the 
plain weave was after that for the basket 
weave. Therefore, the plain and basket 
weave patterns showed better performance 
than the other weave patterns, which had a 
highly similar representation performance. 
The diamond twill, complicated twill, 
warp satin, and twill were after the best 
ones because their PSNR and SSIM had 
extremely small differences. Although a 
difference existed between the warp satin 
and honeycomb, the average result was the 
worst one. 

As stated above, the weave pattern was 
roughly divided into three groups in 
terms of PSNR and SSIM. The texture 
period both in the direction of warp 
and weft was studied for all the test 
samples (see Table 1) to investigate their 
structure. To be more precise, the texture 
period and representation result were 
combined to classify the weave pattern. 
From Table 1, the texture period for 
plain, basket weave, and diamond were 
the same, which was the smallest among 
the weave patterns. In addition, the 
representation result for plain and basket 
weave was the best on the basis of PSNR 
and SSIM, as stated above. Therefore, 
the plain and basket weave was the first 
type. Except for the twill, the other weave 

patterns had a very similar period, it was 
very hard to classify the weave pattern. 
Considering the representation result, the 
warp satin, diamond twill, and compound 
twill belong to the second type. The warp 
satin, honeycomb, and twill were of the 
third kind. 

3.1.4.  Fabric defect detection

The method proposed could also be 
applied in fabric defect detection. To 
evaluate its efficiency, different kinds of 
fabric defects, eight in total, were detected. 
Firstly, the approximated image, which 
could be seen as a ‘standard template’, 
was obtained by the sparse dictionary with 
a non-overlapping small patch. Secondly, 
a subtraction was undertaken between the 
original image and reconstructed image. 
Finally, the defects were pointed out by 
setting an appropriate threshold patch by 
patch. The results are illustrated in Figure 
9, from which different defects could be 
accurately located. 

4.  Conclusions

In this paper, a novel algorithm is 
proposed based on sparse representation to 
address the fabric texture characterisation 
problem. The method proposed can 
efficiently approximate columns of 
regular fabric image samples with a 
linear combination of their elements. The 
parameter is flexible, and with different 
small patch division methods, the 
reconstructed woven fabric texture image 
can be applied to regular fabric texture 
and defective fabrics.

For fabric characterisation, the experimental 
results showed that different weave patterns 

have various representation results. The eight 
different weave patterns were preliminarily 
classified into three groups regarding the 
representation result and texture period. The 
plain and basket weave patterns had the best 
performance. The defects can be inspected 
well by the designed algorithm.

In the future, more kinds of fabric types 
and parameters may be taken into account 
to improve the representation result. 
The approach will be extended to detect 
complex fabric defect samples.
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Sample
No. Plain twill warp

satin
weft 
satin

basket 
weave

honey
comb

compound 
twill

diamond 
twill

1 11 17 14 14 5 19 15 14 11 10 5 5 20 22 25 20

2 6 7 7 10 5 5 13 17 8 7 10 10 11 18 17 9

3 3 3 6 7 14 17 14 10 6 8 9 12 11 13 16 9

4 7 7 8 6 12 13 6 16 7 7 16 14 15 12 12 9

5 11 8 9 9 28 14 17 23 6 6 9 26 13 12 28 28

Average 8 8 9 9 13 14 13 16 8 8 10 13 14 15 20 15

Table 1. Texture period for various weave patterns, for every weave pattern, the left is warp period and the right is weft period
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