PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reinforcement of composite pipelines for multipurpose transportation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of monolithic behavior of a metal pipe and fiberglass safety cage has been considered in the article. The prestressed case does not only decrease the deformability of a pipe on-load but it also protects metal from corrosion. The ability to withstand the arising stresses has been investigated for both strip fiberglass reinforcement and the whole construction. It has been shown that the deformability of fiberglass depends on the kind of binder. The maximum strength value has been obtained while gluing glass fibers with butvar-phenolic glue. The calculated rupture strength coefficient of strip fiberglass reinforcement and the analysis of monolithic behaviour of metal and reinforcement proved the precondition as to the plasticity of a developed material. The process of force transmission between a steel pipe and fiberglass at ductile stage has been analyzed in the article. While forecasting the work of a pipe on-load, it is necessary to take into account nonlinearity of metal-fiberglass pipe properties.
Czasopismo
Rocznik
Strony
69--79
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Ukrainian State University of Railway Transport 7, Feuerbach square, Kharkiv, 61050, Ukraine
  • Ukrainian State University of Railway Transport 7, Feuerbach square, Kharkiv, 61050, Ukraine
  • O.M. Beketov National University of Urban Economy 17, Marshal Bazhanov, Kharkiv, 61002, Ukraine
autor
  • O.M. Beketov National University of Urban Economy 17, Marshal Bazhanov, Kharkiv, 61002, Ukraine
Bibliografia
  • 1. Orbulov, I.N. & Németh, Á. Infiltration Characteristics of Carbon Fiber Reinforced MMCs. In: Materials Science Forum. 2010. Vol. 659. P. 229-234. Available at: http://dx.doi.org/10.4028/www.scientific.net/MSF.659.229
  • 2. Hou, M.Y. & Jia, B. & Liu, S.F. & Chen, X.Q. Stress Analysis of Steel Pipelines Strengthened by CFRP Sheet. Advanced Materials Research. 2013. Vols. 671-674. P. 786-789. Available at: http://dx.doi.org/10.4028/www.scientific.net/AMR.671-674.786
  • 3. Zheng, H.W. & Xiang, S.H. & Chang, L. Study on Production Technique of the Metal Reinforced Polyethylene Spiral Corrugated Pipe. Advanced Materials Research. 2013. Vols. 634-638. P. 2040-2043. Available at: http://dx.doi.org/10.4028/www.scientific.net/AMR.634-638.2040
  • 4. Zhao, Z.M. & Zhang, L. & Wang, J.J. & Yan, S. & Cao, J.R. Joining between Ceramics and Metal in Composite Pipes Fabricated by the SHS Metallurgical Process. Key Engineering Materials. 2005. Vols. 280-283. P. 887-890. Available at: http://dx.doi.org/10.4028/www.scientific.net/KEM.280-283.887
  • 5. Ganga Rao, H. Infrastructure Applications of Fiber-Reinforced Polymer Composites. Applied Plastics Engineering Handbook. 2017. Р. 675-695. Available at: http://dx.doi.org/10.1016/b978-0-323-39040-8.00032-8
  • 6. Aguiar, L. & Pridmore, A. & Geraghty, M. Miami-Dade Implements Hybrid FRP Trenchless Repair System. Pipelines 2015. American Society of Civil Engineers (ASCE). 2015. Available at: http://dx.doi.org/10.1061/9780784479360.115
  • 7. Ivana, V. Strength analysis of filament-wound composite tubes. Hemijska industrija. National Library of Serbia. 2010. Vol. 64. No. 3. P. 239-245. Available at: http://dx.doi.org/10.2298/hemind091221032v
  • 8. Zefzafy, H.E. & Mohamed, H.M. & Masmoudi, R. Effect of short and long term freeze-thaw cycling on the mechanical behaviour of filament wound FRP-tubes. International Journal of Microstructure and Materials Properties (IJMMP). 2012. Vol. 7. No. 5. Р. 439-450. Available at: http://dx.doi.org/10.1504/ijmmp.2012.050946
  • 9. Prachasaree, W. & Vijay, P.V. & GangaRao, H.V.S. Durability study on CFRP wrapped concreto beams under aging conditions. International Journal of Structural Engineering. 2011. Vol. 2. No. 3. Р. 209-228. Available at: http://dx.doi.org/10.1504/ijstructe.2011.040781
  • 10. Petro, S.H. & Kemp, E.L. & Gangarao, H.V.S. Saving Covered Bridges with Glass-Fiber-Reinforced Polymers. APT Bulletin: The Journal of Preservation Technology. 2004. Vol. 35. No. 4. Р. 27-34. Available at: http://dx.doi.org/10.2307/4126417
  • 11. Hou, Y. & Lei, D. & Li, S. & Yang, W. & Li, C.Q. Experimental Investigation on Corrosion Effect on Mechanical Properties of Buried Metal Pipes. International Journal of Corrosion. 2016. Vol. 2016. Article ID 5808372. 13 p. Available at: http://dx.doi.org/10.1155/2016/5808372
  • 12. Trykoz, L.V. & Bagiyanc, I.V. & Savchuk, V.Yu. & Pustovoitova, O.M. & Kamchatnaya, S.M. & Saiapin, O.S. Investigation into Electrical Conductivity of the Multicomponent System of Trackbed. International Journal of Engineering Research in Africa. 2016. Vol. 25. P. 52-57. Available at: http://dx.doi.org/10.4028/www.scientific.net/JERA.25.52
  • 13. Avdeeva, A. & Shlykova, I. & Antonova, M. & Barabanschikov, Yu. & Belyaeva, S. Reinforcement of concrete structures by fiberglass rods. In: International Scientific Conference Week of Science in SPbPU – Civil Engineering (SPbWOSCE-2015) MATEC Web of Conferences, 2016. Vol. 53. P. 1-5. Available at: https://doi.org/10.1051/matecconf/20165301006
  • 14. Muralidhar, B.A. Study of flax hybrid preforms reinforced epoxy composites. Materials & Design. 2013. Vol. 52. P. 835-840. Available at: http://dx.doi.org/10.1016/j.matdes.2013.06.020
  • 15. Abbasi, A. & Hogg, P.J. Temperature and environmental effects on glass fibre rebar: modulus, strength and interfacial bond strength with concrete. Composites Part B: Engineering. 2005. Vol. 36. No. 5. P. 394-404. Available at: http://dx.doi.org/10.1016/j.compositesb.2005.01.006
  • 16. Maranan, G.B. & Manalo, A.C. & Benmokrane, B. & Karunasena, W. & Mendis, P. Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars. Engineering Structures. 2016. Vol. 117. P. 422-436. Available at: http://dx.doi.org/10.1016/j.engstruct.2016.03.036
  • 17. Hegemier, G. & Stewart, L. Application of fiber-reinforced polymers to reinforced concreto bridges. Innovative Bridge Design Handbook. 2016. P. 777-794. Available at: http://dx.doi.org/10.1016/b978-0-12-800058-8.00030-x
  • 18. Al-Bayati, G. & Al-Mahaidi, R. & Kalfat, R. Torsional strengthening of reinforced concreto beams using different configurations of NSM FRP with epoxy resins and cement-based adhesives. Composite Structures. 2017. Vol. 168. P. 569-581. Available at: http://dx.doi.org/10.1016/j.compstruct.2016.12.045
  • 19. Hadhood, A. & Mohamed, H.M. & Benmokrane, B. Axial Load–Moment Interaction Diagram of Circular Concrete Columns Reinforced with CFRP Bars and Spirals: Experimental and Theoretical Investigations. Journal of Composites for Construction, American Society of Civil Engineers (ASCE). 2017. Vol. 21. No. 2. P. 78-92. Available at: http://dx.doi.org/10.1061/(asce)cc.1943-5614.0000748
  • 20. Hadhood, A. & Mohamed, H.M. & Benmokrane, B. Experimental Study of Circular High-Strength Concrete Columns Reinforced with GFRP Bars and Spirals under Concentric and Eccentric Loading. Journal of Composites for Construction, American Society of Civil Engineers (ASCE). 2017. Vol. 21. No. 2. P. 50-78. Available at: http://dx.doi.org/10.1061/(asce)cc.1943-5614.0000734
  • 21. Pridmore, A.B. & Ojdrovic, R.P. Trenchless Repair of Concrete Pipelines Using Fiber-ReinforcedPolymer Composites. Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites. 2015. P. 17-38. Available at: http://dx.doi.org/10.1016/b978-0-85709-684-5.00002-3
  • 22. Hegger, J. & Will, N. Textile-reinforced concrete: Design models Textile Fibre. Composites in Civil Engineering. 2016. P. 189-207. Available at: http://dx.doi.org/10.1016/B978-1-78242-446-8.00009-4
  • 23. Han, J. & Liang, Y. The Strength Research of Pressure Pipeline Reinforced with CFRP. Applied Mechanics and Materials. 2014. Vols. 446-447. P. 1405-1408. Available at: http://dx.doi.org/10.4028/www.scientific.net/AMM.446-447.1405
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34c8b5a6-c939-4fe9-9297-61a9c9c0e242
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.