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Abstract: This work makes use of singular integral equations method to solve plane contact problem for a half-space containing cracks. 
This method is based on complex variables. Relationships are presented which help find the contact pressure under the punch and the 
value of stress intensity factors at the crack tips. A detailed solution is presented for the problem of a punch pressed to the surface 
of a half-space weakened by a single straight crack. It includes both a situation where the punch has a flat and parabolic base. The influ-
ence of friction and the position of the crack on the distribution of the values of stress intensity factors    i     in the functions of crack 

length and distance from the contact zone was analyzed in detail. 
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1. INTRODUCTION 

In the mechanical engineering or in the technology of abrasive 
machining, we often meet the problem connected with friction 
between cooperating elements. Many classic examples of such 
problems can be found in various friction brakes, gear units, 
in grinding processes, or in the problems concerning wheels 
rolling and braking on rails. In the analysis of such cases it is 
usually assumed that both elements have no defects, such as 
edge or internal cracks. It is obvious that the appearance of such 
defects leads to a redistribution and most of all strong concentra-
tion of stresses connected with the effect of a crack.  

This work concentrates on the analysis of effects connected 
with the “sliding” of a punch pressed against an elastic half-space 
weakened by edge or internal cracks. The analysis makes use 
of the singular integral equations method including Muskhelish-
vili’s complex potentials (Muskhelishvili, 1962). It covers a plane 
problem assuming that the punch is perfectly rigid and neglecting 
the problems of heat generation. In many papers, such problems 
are modeled by applying load in the form of an appropriate con-
tact pressure on the surface of a half-space in the place where the 
punch is applied (Hills et al., 1993; Hills and Nowell, 1994). It can 
be also found for example in the series of works by Goshima and 
co-authors, which concentrate the problem of rolling (including 
sliding) of an rigid cylindrical punch on a damaged elastic half-
space. This analysis included both fatigue and temperature ef-
fects. The analyzed defects included a single edge crack extend-
ing to the surface of the elastic half-space (Goshima and Keer, 
1990), two edge cracks of varying orientation (Goshima and 
Kamishima, 1996), a set of periodic cracks (Goshima and 
Kamishima, 1994; Goshima, 2003). We can also find the solution 
of a plane problem with a defect in the form of a single internal 
crack (Goshima and Soda, 1997) and problems with a three-
dimensional edge crack (Goshima, 2003; Goshima et al., 1990). 
Bryant et al. (1984) examined the interaction effects between 
cylindrical indenter and single-cracked half-space but only for the 
case when surface-braking crack was presented in contact zone. 
Other paper by Bryant (Keer and Bryant, 1983) presents a fatigue 

problem where cylindrical damaged indenter were considered 
or problem where a half-space is weakened by two cracks: verti-
cal edge crack and horizontal subsurface crack (Keer et al., 
1982).   Similar subjects are covered in works by Hasebe et al., 
(Hasebe, 1981; Hasebe et al., 1989; Okumura et al., 1990; 
Hasebe and Qian, 1995, 1997, 1998; Qian and Hasebe, 1997), 
where for example a punch is applied with one rounded and one 
sharp end (Hasebe and Qian, 1998). The problem of contact 
between the punch and a half-space weakened by cracks was 
also analyzed by Panasyuk and co-authors (Panasyuk et al., 1995 
2000; Datsyshyn et al., 2001), where trajectories are found for 
edge cracks in the context of fatigue (Datsyshyn et al., 2001). 
A detailed analysis has also been provided for the problem 
of a flat-based punch on the surface of a half-space weakened 
by a internal (subsurface) crack, where the faces of the crack are 
in contact (Panasyuk et al., 1995). For last years a problem 
of interaction between crack and punch has been applied to FGM 
materials. It was analyzed parabolic or cylindrical stamp acting 
on graded coatings (Guler and Erdogan, 2007) or the case when 
the base of the punch was assumed to be flat (Dag and Erdogan, 
2002). 

2. FORMULATION OF THE PROBLEM 

Let us assume that into the       surface of an elastic half-

space              with internal cracks a punch of any 

shape (Fig. 1) is pressed with normal force   and slide under the 
influence of tangential force   ,   - friction coefficient. Let us also 
assume that under the influence of such loading the punch is in a 
limit equilibrium condition. Size of the contact zone between 
punch and surface of half-space is 2a. It should be noted that 
moment affects the punch preventing it from turning. 

The boundary conditions on the y = 0 plane can be noted as: 

 0,xy y f x C      

 0 :x L x a x a      
(1) 
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 0 00,y xyi p x x L      (2) 

where  ,    are the normal and tangent component of the 

stress tensor,  is a component of the displacement vector in the 

  direction,      – a function describing the shape of the punch 
base, and   – constant (vertical displacement of the punch). 

  

 
Fig. 1. Scheme of considered problem 

The edgeses of the crack are assumed to be under a self-
balanced load in the following form: 

1
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n
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k
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

     (3) 

where   and   are a normal and tangential component of the 

surface stress vector on the faces of the crack,         ̅̅ ̅̅̅  – 
the contour of  –th crack, “ ” and “ ” denote left and right edges 

of the    contour respectively. 
General complex stress potentials for a system of curved 

cracks in a half-space affected by external load, are as follows 
(Muskhelishvili, 1962; Savruk, 1981):  
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where    denotes loading of the edge of the half-space and       
is an unknown function on the contours of the cracks. 

The derivative of vertical displacement of the edge of the half-
space can be given as follows (Gallin, 1980): 
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where   is shear modulus,   – Poisson's ratio,        ; ,  

  – respectively: the normal and tangential component of the load 
on the surface of the half-space. 

Satisfying the boundary conditions (1) with the Eq. (6) leads to 
the following integral equation: 
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where   
   

   
. 

To Eq. (7) we have to add a punch equilibrium condition: 

 
0

d
L

t t P    (8) 

which guarantees uniqueness solution of the Eq. (7) 
In the case of a homogeneous half-space, with no cracks, 

         , and Eqs. (7) and (8) are known (see Muskhelish-
vili, 1962).  

Integral equations on the contours of the cracks can be written 
in condensed form (Savruk, 1981): 

         1 1 1 1
d '

' ' ' ' ' ' ' , ' ,
d

t
t t t t t p t t L

t
        

 
 (9) 

where 1(t’) i 1(t’)  – direct values of complex potentials (4). 
To Eq. (9) we also have to add displacement uniqueness 

conditions while considering each internal crack:  

 d 0 2

kL

g' t t , k ,n   (10) 

Eqs. (7) and (9) form a system of singular integral equations 
of the first and second kind, which allows for the finding of normal 

contact pressure     and a derivative of the displacement jumps 
vector       on the contours of cracks. Including conditions (8) 
and (10) this system has a single solution for any right part in the 
function class, which have integrable singularities at the ends 
of the ranges of integration (Muskhelishvili, 1962). 

It has to be noted that the system of integral Eqs. (7)–(9) was 
found under conditions (3). This means that there can be given 
loads on crack faces or, in a particular case, no load. Such 
boundary conditions can be realized only when the cracks are 
within the tensile stress fields.  However, as a result of pressing 
the punch in, some or even all cracks can be found in the field 
of compression stresses, which is produced in the half-space 
under the punch. In that situation the faces of the cracks will be in 
contact. If this is so along the whole length of the crack, than Eqs 
(7)–(10) can be easily modifies, including the continuity of normal 
displacement on the contours of the crack and friction according 
to Amonton's law. In the general case we receive a mixed problem 
on the faces of the crack, which significantly increases the 
complexity of the solution. However, most works in this field, 
including this one, analyze these questions without including 
contact between crack faces. 

(5) 
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Complex potential (5) can be presented in the form: 
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where: 
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Taking into account Eqs. (11) and (12), the system of integral 
Eqs. (7) and (9) can be noted as: 
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Kernels of the system of Eqs. (13) and (14) are given by func-

tions    ,     and     (         ) described by relations (12), 

can be represent as follows: 
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Note, that function           includes Cauchy's singular 
kernel. This part will not be specially singled out, unless numerical 
integration formulas will be used to carry out the numerical 
calculations, which are correct for both singular and regular 
integrals. 

3. PARTICULAR CASE OF A SINGLE EDGE CRACK 

Let us consider a case, where a half-space is weakened 
by only one straight crack (Fig. 2) Let us introduce a parametric 
notation of the contour of crack L and the zone of contact between 

the punch and the surface of half-space   : 
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where  is angle of crack orientation defined according to Fig. 2.  

 
Fig. 2. Scheme of a pressed punch „sliding” on a surface  
            of a single-cracked half-space 

Moving to non-dimensional variables and functions the system 
of integral Eqs. (13) and (14) and the condition of solvability (8) 
has the following form:  
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A solution for the system of integral Eqs. (17)-(18), which sat-
isfies condition (19) will be sought in the class of functions, which 
have integrable singularities:  
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where     and     are continuous functions in a closed 

interval       , and parameters  and  are roots 

   –         ,    –      –   ,             of charac-

teristic equations:       –  ,        .  
Let us remind that only for internal cracks condition (10) must 

be satisfied. However for the case of the edge crack singularity 

is produced only at the one crack tip (i.e. for      ). At the 

second tip     –  ), which extends to the surface, singularity 
disappears and also condition (10) can not be satisfied. So the 
solution of Eqs. (17)–(18) will be sought in the same class 
of functions (21) but condition (10) should be replaced by: 

 1 0u    (22) 

In the case of a homogeneous half-space, with no cracks, 

there is   (̂)    and a system of integral Eqs. (17) and (18) 

is reduced to a single Eq. (18) when condition (19) is satisfy. 

4. NUMERICAL SOLUTION 
OF SINGULAR INTEGRAL EQUATIONS SYSTEM 

For a numerical solution of the system of Eqs. (17)–(19) we 
will use the quadrature method (or the mechanical quadrature 
method) (Savruk, 1981; Savruk et al., 1999, Savruk and Tomczyk, 
2010) using  Gauss-Chebyshev nodes. As a result we receive the 
following system of linear algebraic equations:  
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 (25) 

The unknown values here are functions     and     

respectively in nodes 
 

 and ̂
 

. The coefficients of the unknowns 

in the system of Eqs. (23) are given by the following  formulas: 
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where                       is a first kind Chebyshev 
polynomial of n degree. 

Using Lagrange's interpolating polynomial for nodes 
 

 we 

can find the values of function     at any point:  
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Particularly, at the ends of the interval        we receive: 
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Similarly, we search for the values of function    ̂
 
  in nodes 

̂
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Stress intensity factors at the crack tip ̂         
   are found 

with these formulas (Savruk, 1981): 
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 
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I II

1
1

' 1

u
K iK a 



     (31) 

It has to be noted that in the case of a flat-based punch 
contact zone    is known. However, if the punch base is rounded 
at one or both ends, the dimensions of the contact zone are not 
known. In these cases the stresses at both ends of the contact 
zone are finite and for the purpose of finding the location of this 
zone we have one or two additional conditions. Particularly, for the 
parabolic punch, which also was the subject of our research, we 
have additional conditions: 

   1 1 0q q    (32) 

thus we determine the half width of contact zone a and the 
eccentricity e (distance of the center of these zone from the punch 
axis). 

5. ANALYSIS OF RESULTS 

The theoretical relations presented in the previous paragraph 
were used to create numerical algorithms which allow to deter-
mine the distribution of contact pressure and the values of stress 
intensity factors at the crack tip. As it was already mentioned, two 
different shapes of the base of the punch were considered – flat 
and parabolic. It was analyzed in detail the influence of the shape 
of the punch base on the distribution of dimensionless stress 

intensity factors    
  √ 

 
,     

   √ 

 
. It was assumed in the 

numerical calculations that the edges of the crack are free of load 

(          in Eq. (3)). 
Results of numerical analysis prove that existence of crack 

(or set of cracks) has a significant influence on contact pressure 
distribution (see Fujimoto et al, 1992, Tomczyk 2011; Savruk and 
Tomczyk, 2010). It corresponds with both flat and parabolic punch 
particularly for crack orientation angles from the range 

(90°, 180°). For these angles crack tip can be found in material 
under contact zone directly and produce a “rapidly” perturbation 
of typical contact pressure distribution. Assuming regular contact 
pressure distribution in the place where punch acting can produce 
considerable errors in many contact problems. Only taking into 
consideration a mutual interaction between crack (or set 
of cracks) and punch gives a detailed information about character 
of pressure distribution. This interaction can be neglected for the 
case of homogenous half-space or when the crack is far away 
from the punch. As it was mentioned for the case of flat punch 
contact zone size a is known. For parabolic punch this size should 
be obtained by using condition of pressure reducing to zero in the 
ends of contact zone (see Eq. (32)).  

In present analysis the dependence of stress intensity factors 
values on distance between crack and punch, crack length and its 
orientation and friction coefficient is discussed. It is also analysed 
the effect of punch shape (parabolic or flat) on stress intensity 
factors. 

In the case of no friction or for small values of friction 
coefficient crack located close to the punch can be present 
in fields of compression stresses. Situation like this can take place 

for both: when 0° <  < 90° (Fig. 3a), and when 90° <  < 180° 
(Fig. 3b).  

a) 

    
b) 

    
Fig 3.  The effect of distance between crack and punch on dimensionless 

stress intensity factors FI and FII for different values of friction  

coefficient (l* = 1,   = 0.3): a)  = 45, b)  = 135  
(dashed lines – parabolic punch, continuous lines – flat punch) 

The effect of punch shape is distinctly seen for 

  (90°, 180°) particular for close cracks when b* < 2.5 (Fig. 3b, 

Fig. 4). For cracks defined by 0° <  < 90° the effect of punch 
shape can be neglected even for small values of distance 
between crack and punch. When the suitable conditions exist the 
crack can close when the flat punch is acting while for the case 
of parabolic punch the same crack is opened. The effect like this 

is more probable when the angle  is close to 180° and values 
of b* are very small (Fig. 5). 

A very interesting situation we can observe in the Fig. 6. 
It presents the effect of translation of crack tip into material under 
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contact zone directly produced by increasing in crack length. It is 
clearly seen that crack starts to close for certain values of l*. This 
effect appears for small values of friction coefficient earlier than 
for higher values. Increasing in friction delays crack closure 
process. Let us note that there is no any influence of punch shape 
on stress intensity factors in Fig. 6. 

a)  

     
b) 

    
Fig. 4. The effect of distance between crack and punch on dimensionless 

stress intensity factors FI (a) and FII (b) for various crack  

orientations (l* = 1,   = 0.3,    = 0.6)  
(dashed lines – parabolic punch, continuous lines – flat punch) 

a)   

    
b) 

    
Fig. 5. Influence of friction on dimensionless stress intensity factors FI  

and FII for flat (continuous lines) and parabolic (dashed lines) punch: 
a) the effect of distance between crack and punch  

(l* = 0.1,   = 0.3,   = 120),  

b) the effect of crack orientation (l *= 0.1, b* = 1.1,   = 0.3) 

 

a) b) 

     
Fig. 6. The effect of crack length on dimensionless stress intensity factors 

FI (a) i FII (b) for various values of friction coefficient  

(b* = 15,   = 0.3,   = 120) 

 

a) b) 

    
Fig. 7. The effect of crack length on dimensionless stress intensity factors 

FI (a) i FII (b) for various crack orientations (b* = 5,   = 0.3,   = 75) 
(dashed lines – parabolic punch, continuous lines – flat punch) 

 

a) 

    
b) 

    
Fig. 8. The effect of crack length on dimensionless stress intensity factors 

FI  and FII for various values of distance between crack and punch 

(  = 0.75,   = 0.3): a)   = 120, b)  = 45  
(dashed lines – parabolic punch, continuous lines – flat punch) 

It is very characteristic for 90° <  < 180° that factors FI and 
FII decrease to zero considerably slower (Fig. 8a) than 

for 0° <  < 90° (Fig. 8b). The effect of crack closure can be 

achieved much more earlier for higher values of  (Fig. 7a). This 
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effect appears more distinctly for 90° <  < 180°. For the case 

of  0° <  < 90° it can be neglected particularly for small values 

of  when it is not visible. 
The effect of crack length is very strong in the region of short 

cracks where l* < 6 (Fig. 8). The most dangerous situations 
appear not for shortest cracks but for cracks where stress 
intensity factors reaches maximal values. This characteristic 
length depends on distance between crack and punch mainly and 
increases as b* increases. The effect of punch shape is as clearly 

as crack is located closer to the punch and for 90° <  < 180° 
only. 

6. CONCLUSIONS 

This work presents a solution of the problem of a rigid punch 
acting on a half-space weakened by a set of cracks. In the 
analysis the method of singular integral equations has been used. 
It has been analyzed in detail the case of a half-space weakened 
by a single edge crack while the base of the punch is parabolic or 
flat. Therefore it has been observed the influence of shape of the 
base of the punch on the the values of KI and KII. This influence 

can be neglected for the crack orientation angle   (0°, 90°) 

as opposed to   (90°, 180°). For a numerical solution of the 
system of integral equations the quadrature method has been 
used, which allowed to reduce this system to a system of linear 
algebraic equations. 

Presented method gives possibility for simultaneously 
calculating the contact pressure and the values of stress intensity 
factors. This means that it is possible to take into account 
the mutual interaction between crack and punch. While analyzing 
the influence of the punch shape, it has to be noted that it has 
a significant influence not only on the characteristics of contact 
pressure distribution, but also on the values of stress intensity 
factors. This influence is particularly notable for cracks close 
to the contact zone and decreases as the crack “moves away”. 
So it shows that for far cracks it doesn’t matter a character 
of applied loading: parabolic, asymptotic or even in the form 
of concentrate force. On the other hand for close cracks it should 
be noted that even not accounting for friction the shape of the 
punch is not without importance.  Furthermore, it was made 
a detailed analysis of the influence of the orientation and length 
of the crack on the values of stress intensity factors KI and KII. For 
vertically oriented cracks the shape of the punch has no influence 
on the values of stress intensity factors even for close cracks. 
Proposed method also allows for description of the changes in the 
contact zone size and the eccentricity of its center when the 
parabolic punch is applied.  

The method presented here can be used for the analysis 
of problems concerning a half-space weakened by a set of edge 
or internal cracks. An attempt could also be made to use this 
solution to analyze problems of single cracks or sets of cracks 
under the surface of a half-space or internal curvelinear 
macroinclusions or holes. Furthermore, the singular integral 
equations method may be used in future to solve problems of 
bilateral contact, with the assumption that both the half-space and 
the punch are not rigid. 
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