Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The hydrogen production technologies developed in the Institute of Fluid-Flow Machinery, Polish Academy of Sciences in Gdańsk are discussed here. They include the following methods: dark fermentation, photoelectrochemical water oxidation and hydrocarbons (or alcohols) reforming by microwave plasma. The potential of hydrogen production by using dark fermentation of different popular wastes such as: agricultural wastes, textile or wood waste, was determined using suitable models. Also, the influence of microaeration during dark fermentation of some substrates, e.g. sour cabbage, was tested. Photochemical oxidation is a water-splitting process driven by radiation at the surface of a titanium-oxide anode. The Si microrods covered by titania films were verified as a photoanode material. The hydrogen production from methane, ethanol, isopropanol and kerosene was driven by a microwave plasma. The results obtained confirm that microwave plasma sources have a high potential for hydrogen production via gaseous and liquid fuels reforming.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
135--144
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Instytut Maszyn Przepływowych PAN im. R. Szewalskiego
autor
- Instytut Maszyn Przepływowych PAN im. R. Szewalskiego
autor
- Instytut Maszyn Przepływowych PAN im. R. Szewalskiego
autor
- Instytut Maszyn Przepływowych PAN im. R. Szewalskiego
autor
- Katedra Algorytmów i Modelowania; Wydział Informatyki, Telekomunikacji i Informatyki; Politechnika Gdańska
autor
- Instytut Maszyn Przepływowych PAN im. R. Szewalskiego
Bibliografia
- 1. Bartacek, J., Zabranska, J., Lens, P.N.L. (2007). Developments and constraints in fermentative hydrogen production. Biofuels, Bioproducts and Biorefining, 1, 201–214. Retrieved from: https://doi.org/10.1002/bbb.17.
- 2. Batista, A.P., Gouveia, L., & Marques, P.A.S.S. (2018). Fermentative hydrogen production from microalgal biomass by a single strain of bacterium Enterobacter aerogenes — Effect of operational conditions and fermentation kinetics. Renewable Energy,119, 203–209. Retrieved from: https://doi.org/10.1016/j.renene.2017.12.017.
- 3. Biedroń, J. (2015). Wodór — krwioobieg nowoczesnej rafinerii, a może paliwo przyszłości?Gdańsk. Retrieved from: www.popihn.pl/download.php?id=199.
- 4. Bloor, L.G., Solarska, R., Bienkowski, K., Kulesza, P.J., Augustynski, J., Symes, M.D., Cronin, L. (2016). Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer. J. Am. Chem. Soc., 138, 6707–6710. Retrieved from: http://doi.org/10.1021/jacs.6b03187.
- 5. Chaganti, S.R., Kim, D.H., & Lalman, J.A. (2012). Dark fermentative hydrogen production by mixed anaerobic cultures: Effect of inoculum treatment methods on hydrogen yield. Renewable Energy,48, 117–121. Retrieved from: https://doi.org/10.1016/j.renene.2012.04.015.
- 6. Chasnyk, O., Sołowski, G., & Shkarupa, O. (2015). Historical, technical and economic aspects of biogas development: Case of Poland and Ukraine. Renewable and Sustainable Energy Reviews,52, 227–239. Retrieved from: https://doi.org/10.1016/j.rser.2015.07.122.
- 7. Czylkowski, D., Hrycak, B., Miotk, R., Jasiński, M., Dors, M., & Mizeraczyk, J. (2018). Hydrogen-enriched gas production from kerosene using an atmospheric pressure microwave plasma system. Fuel,215, 686–694. Retrieved from: https://doi.org/10.1016/j.fuel.2017.11.137.
- 8. Czylkowski, D., Hrycak, B., Miotk, R., Jasiński, M., Mizeraczyk, J., & Dors, M. (2016). Microwave plasma for hydrogen production from liquids. Nukleonika,61(2), 185–190. Retrieved from: https://doi.org/10.1515/nuka-2016-0031.
- 9. Das, D. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy,26(1), 13–28. Retrieved from: http://doi.org/10.1016/S0360-3199(00)00058-6.
- 10. Duangmanee, T. (2009). Micro-aeration of hydrogen sulfide removal from biogas. Iowa State University.
- 11. Ferraz Júnior, A.D.N., Etchebehere, C., & Zaiat, M. (2015). High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresource Technology,186, 81–88. Retrieved from: https://doi.org/10.1016/j.biortech.2015.03.035.
- 12. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy,144, 73–95. Retrieved from: https://doi.org/10.1016/j.apenergy.2015.01.045.
- 13. Grimes, C., Varghese, O., & Ranjan, S. (eds.). (2008). Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis. Boston (MA): Springer. Retrieved from: https://doi.org/10.1007/978-0-387-68238-9.
- 14. Hrycak, B., Czylkowski, D., Jasiński, M., Dors, M., & Mizeraczyk, J. (2019). Hydrogen Production via Synthetic Biogas Reforming in Atmospheric-Pressure Microwave (915 MHz) Plasma at High Gas-Flow Output. Plasma Chemistry and Plasma Processing, (0123456789). Retrieved from: https://doi.org/10.1007/s11090-019-09962-z.
- 15. Jasiński, M., Czylkowski, D., Hrycak, B., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave plasma source for hydrogen production. International Journal of Hydrogen Energy,38(26), 11473–11483. Retrieved from: https://doi.org/10.1016/j.ijhydene.2013.05.105.
- 16. Jenicek, P., Koubova, J., Bindzar, J., & Zabranska, J. (2010). Advantages of anaerobic digestion of sludge in microaerobic conditions. Water Science and Technology,62(2), 427–434. Retrieved from: https://doi.org/10.2166/wst.2010.305.
- 17. Keskin, T., Arslan, K., Nalakth Abubackar, H., Vural, C., Eroglu, D., Karaalp, D., Azbar, N. (2018). Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes. International Journal of Hydrogen Energy,43(23), 10666–10677. Retrieved from: https://doi.org/10.1016/j.ijhydene.2018.01.028.
- 18. Kongjan, P., O-Thong, S., Kotay, M., Min, B., & Angelidaki, I. (2010). Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnology and Bioengineering,105(5), 899–908. Retrieved from: https://doi.org/10.1002/bit.22616.
- 19. Liu, B.-F., Jin, Y.-R., Cui, Q.-F., Xie, G., Wu, J.-N., & Ren, N.-Q. (2015). Photo-fermentation hydrogen production by Rhodopseudomonas sp. nov. strain A7 isolated from the sludge in a bioreactor. International Journal of Hydrogen Energy,40(28), 8661–8668. Retrieved from: https://doi.org/10.1016/j.ijhydene.2015.05.001.
- 20. Miotk, R., Hrycak, B., Czylkowski, D., Dors, M., Jasinski, M., & Mizeraczyk, J. (2016). Liquid fuel reforming using microwave plasma at atmospheric pressure. Plasma Sources Science and Technology,25(3). Retrieved from: https://doi.org/10.1088/0963-0252/25/3/035022.
- 21. Mizeraczyk, J., Jasiński, M., Nowakowska, H., Dors, M. (2012). Studies of atmospheric-pressure microwave plasmas used for gas processing. Nukleonika,57(2), 241–247.
- 22. Monlau, F., Aemig, Q., Trably, E., Hamelin, J., Steyer, J.P., & Carrere, H. (2013). Specific inhibition of biohydrogen-producing Clostridium sp. after dilute-acid pretreatment of sunflower stalks. International Journal of Hydrogen Energy,38(28), 12273–12282. Retrieved from: https://doi.org/10.1016/j.ijhydene.2013.07.018.
- 23. Ni, M., Leung, M.K.H., Leung, D.Y.C., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews,11(3), 401–425. Retrieved from: https://doi.org/10.1016/j.rser.2005.01.009.
- 24. Pavlenko, M., Siuzdak, K., Coy, E., Jancelewicz, M., Jurga, S., & Iatsunskyi, I. (2017). Silicon/TiO2 core-shell nanopillar photoanodes for enhanced photoelectrochemical water oxidation. International Journal of Hydrogen Energy,42(51), 30076–30085. Retrieved from: https://doi.org/10.1016/j.ijhydene.2017.10.033.
- 25. Ramos, I., Peña, M., & Fdz-Polanco, M. (2014). Where does the removal of HS from biogas occur in microaerobic reactors? Bioresource Technology,166, 151–157. Retrieved from: https://doi.org/10.1016/j.biortech.2014.05.058.
- 26. Randolph, K. (2013). Hydrogen Production. Annual Merit Review and Peer Evaluation Meeting. Virginia: Arlington.
- 27. Ren, N., Guo, W., Liu, B., Cao, G., & Ding, J. (2011). Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production. Current Opinion in Biotechnology,22(3), 365–370. Retrieved from: https://doi.org/10.1016/j.copbio.2011.04.022.
- 28. Seifert, K., Zagrodnik, R., Stodolny, M., & Łaniecki, M. (2018). Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation. Renewable Energy,122, 526–532. Retrieved from: https://doi.org/10.1016/j.renene.2018.01.105.
- 29. Sołowski, G. (2016). Obróbka lignocelulozy — pierwszy etap zielonej energii, chemii wraz z wodorem. In K. Szala, M. Kropiwniec (eds.), Wybrane zagadnienia z zakresu ochrony środowiska i energii odnawialnej (1st ed., pp. 56–75). Lublin: Fundacja Tygiel.
- 30. Sołowski, G. (2016a). Alternatywne źródła energii — wybrane zagadnienia. Biohydrogen “the fuel of the future”; current methods of production and their comparison. Retrieved from: http://bc.wydawnictwo-tygiel.pl/publikacja/8B19E6C9-44F9-68AE-01B0-D3D5DF6E9734.
- 31. Sołowski, G. (2016b). Theoretical potential of hydrogen production from textiles wastes in pomeranian region by means of dark fermentation. In T. Noch, W. Mikołajczewska, & A. We -sołowska (eds.), Globalizacja a regionalna ochrona środowiska (pp. 313–317). Gdańsk: Wydawnictwo Gdańskiej Szkoły Wyższej.
- 32. Sołowski, G. (2016c). Hydrogen production from wood waste by mean of dark fermentation. In K. Pikoń, & L. Czarnowska (eds.), Contemporary Problems of Power Engineering.
- 33. Sołowski, G. (2018). Bioprocessing and Biotechniques Biohydrogen Production — Sources and Methods: A Review. International Journal of Bioprocessing and Biotechniques,2018(01), 1–22. Retrieved from: https://doi.org/10.20911/IJBBT-101.
- 34. Sołowski, G., Shalaby, M.S., Abdallah, H., Shaban, A.M., Cenian, A. (2018). Production of hydrogen from biomass and its separation using membrane technology. Renewable and Sustainable Energy Reviews,82, 3152–3167. Retrieved from: https://doi.org/10.1016/j.rser.2017.10.027.
- 35. Sołowski, G., Hrycak, B., Czylkowski, D., Cenian, A., Pastuszak, K. (2018a). Oxygen sensitivity of hydrogenesis and methanogenesis. In Contemporary Problems of Power Engineering and Environmental Protection 2017 (pp. 157–159).
- 36. Sołowski, G., Hrycak, B., Czylkowski, D., Cenian, A., Pastuszak, K., Konkol, I. (2018b). Hydrogen and methane production under conditions of dark fermentation process with low oxygen concentration. In T. Sabu (ed.), Proceedings of the International Conference on Reuse and Recycling. Kerala (India): Kottayam.
- 37. Sołowski, G., Konkol, I., Cenian, A. (2019). Theoretical potential of hydrogen production from corn wastes in Poland by means of dark fermentation. Ecological Chemistry and Engineering S,26.
- 38. Spasiano, D. (2018). Dark fermentation process as pretreatment for a sustainable denaturation of asbestos containing wastes. Journal of Hazardous Materials,349(February), 45–50. Retrieved from: http://doi.org/10.1016/j.jhazmat.2018.01.049.
- 39. Toledo-Alarcón, J., Capson-Tojo, G., Marone, A., Paillet, F. (2017). Basics of bio-hydrogen production by dark fermentation. In Bioreactors for Microbial Biomass and Energy Conversion (pp. 199–220).
- 40. Tommasi, T., Sassi, G., Ruggeri, B. (2008). Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: Effectiveness and reproducibility. Water Science and Technology,58(8), 1623–1628. Retrieved from: https://doi.org/10.2166/wst.2008.506.
- 41. Wang, J.L., & Wan, W. (2008). Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. International Journal of Hydrogen Energy,33(12), 2934–2941. Retrieved from: https://doi.org/10.1016/j.ijhydene.2008.03.048.
- 42. Wang, B., Li, Y., Ren, N. (2013). Biohydrogen from molasses with ethanol-type fermentation: Effect of hydraulic retention time. International Journal of Hydrogen Energy,38(11), 4361–4367. Retrieved from: https://doi.org/10.1016/j.ijhydene.2013.01.120.
- 43. Woodward, J., Orr, M., Cordray, K., Greenbaum, E. (2000). Enzymatic production of biohydrogen. Nature,405, 1014–1015. Retrieved from: https://doi.org/10.1038/35016633.
- 44. Xing, Y., Li, Z., Fan, Y., Hou, H. (2010). Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environmental Science and Pollution Research,17(2), 392–399. Retrieved from: https://doi.org/10.1007/s11356-009-0187-4.
- 45. Zhu, J., Li, Y., Wu, X., Miller, C., Chen, P., Ruan, R. (2009). Swine manure fermentation for hydrogen production. Bioresource Technology,100(22), 5472–5477. Retrieved from: https://doi.org/10.1016/j.biortech.2008.11.045.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34c749a5-8283-4bd4-bbbb-1b4c60550251