PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Methods For Ethylhexyl 4-Methoxycinnamate Acid Ester Oxidation In Water Medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the studies was to compare an impact of oxidizing agents on degradation of ethylhexyl 4-methoxycinnamate acid (EHMC). The oxidation reaction was carried out in the presence of sodium hypochlorite, hydrogen peroxide and ozone with/without UV radiation. EHMC degradation and the analysis of products were performed using gas chromatograph coupled with a mass spectrometry detector. The most effective method of EHMC degradation turned out to be ozonation with participation of UV radiation. In this system, degradation proceeded most quickly and generated a small amount of by-products (2-propyl-1-pentanol; 4-metoxybenzaldehyde and Z-EHMC). Under the influence of sodium hypochlorite, numerous chloroorganic products were formed, which can cause secondary contamination of water. Application of appropriate oxidation processes can contribute to degradation of micropollutants and thus to improvement of water quality.
Słowa kluczowe
EN
Rocznik
Strony
204--210
Opis fizyczny
Bibliogr. 25 poz., tab, rys.
Twórcy
  • Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
  • Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1.Bartkowska I. 2014. Dynamics of water consumption changes in a tourist resort. Journal of Ecological Engineering, 15, 46–54.
  • 2. Buthiyappan A., Aziz A., Raman A., Daud W. 2015. Degradation performance and cost implication of UV-integrated advanced oxidation processes for wastewater treatments. Reviews in Chemical Engineering, 3, 263–302.
  • 3.Chatha, S.H., Ali S., Kiran S., Gulzar T., Kamal S.H., Ghaffar A., Chatha M.N. 2016. Comparative study on decolorisation and mineralization of synthetic and real textile effluents using advanced oxidation processes. Oxidation Communications , 39 1604–1614.
  • 4.Dąbrowska J., Bawiec A., Pawęska K., Kamińska J., Stodolak R. 2017. Assessing the Impact of Wastewater Effluent Diversion on Water Quality. Polish Journal of Environmental Studies, 26, 9–16.
  • 5.Directive of European Parliament and Council 2008/105/WE.
  • 6.Ekpeghere K.I., Kim U.J., O S.H., Kim H.Y., Oh J.E. 2016. Distribution and seasonal occurrence of UV filters in rivers and wastewater treatment plants in Korea. Science of the Total Environment, 542, 121–128.
  • 7.Fent L., Kunzac P. Y., Gomezd E. 2008. UV Filters in the Aquatic Environment Induce Hormonal Effects and Affect Fertility and Reproduction in Fish. Chimia, 62, 368–370.
  • 8.Gackowska A., Przybyłek M., Studziński W., Gaca J. 2016. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite. Environ Sci Pollut Res, 23, 1886–1897.
  • 9.Giokas D.L., Salvador A., Chisvert A. 2007. UV filters: From sunscreens to human body and the environment. Trends in Analytical Chemistry, 5(26), 360–374.
  • 10.Gomez E., Bachelot M., Boillot C., Munaron D., Chiron S., Casellas C., Fenet H. 2012. Bioconcentration of two pharmaceuticals (benzodiazepines) and two personal care products (UV filters) in marine mussels (Mytilus galloprovincialis) under controlled laboratory conditions. Environ Sci Pollut Res, 19, 2561–2569.
  • 11.Hanson K.M., Narayanan S., Nichols V.M., Barden ChJ. 2015. Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates. Photochem Photobiol Sci, 14, 1607–1616.
  • 12.He Y., Wang Y., Lee H.K. 2000. Tracę analysis of ten chlorinated benzenes in water by headspace solid-phase microextraction. J. Chromatogr. A, 874, 149–154.
  • 13.Jităreanu A.,Tătărîngă G., Zbancioc A.M., Stănescu U. 2011. Toxicity of Some Cinnamic Acid Derivatives to Common Bean (Phaseolus vulgaris). Notulae Botanicae Horti Agrobotanici, 39 (2), 130–134.
  • 14.Kondo T., Yamamoto H., Tatarazako N., Kawabe K., Koshio M., Hirai N., Morita M. 2005. Bioconcentration factor of relatively low concentrations of chlorophenols in Japanese medaka. Chemosphere, 61(9), 1299–1304.
  • 15.Li W.H., Ma Y.M., Guo C.S., Hu W., Liu K.M., Wang Y.Q., Zhu T. 2007. Occurrence and behavior of four ofthe most used sunscreen UV filters in a wastewater reclamation plant. Water Research, 41(15), 3506–3512.
  • 16.Michael-Kordatou I., Michael C., Duan X., He X., Dionysiou D.D., Mills M.A., Fatta-Kassinos D. 2015. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Res, 77, 213–248.
  • 17.Nakajima M., Kawakami T., Niino T., Takahashi Y., Onodera S. 2009. Aquatic fate of sunscreen agents octyl-4-methoxycinnamate and octyl-4-dimethylaminobenzoate in model swimming pools and the mutagenic assays of their chlorination byproducts. J Health Sci, 55, 363–372.
  • 18.Negreira N., Canosa P., Rodríguez I., Ramil M., Rubí E., Cela R. 2008. Study of some UV filters stability in chlorinated water and identification of halogenated by-products by gas chromatography–mass spectrometry. J Chromatogr A, 1178 (1–2), 206–214.
  • 19.Pattanaargson S, Limphong P. 2001. Stability of octyl methoxycinnamate and identification of its
  • photo-degradation product. Int J Cosmetic Sci, 23, 153–160.
  • 20. Pierogrande M. Ch., Basagila G. 2007. GC-MS analityical methods for the determination of personal-care products in water matrices. Trends in Analytical Chemistry, 26, 1086–1094.
  • 21. Ramos S., Homem V., Alves A., Santos L. 2015. Advances in analytical methods and occurrence of organic UV-Filters in the environment. Science of the Total Environment, 526, 278–311.
  • 22. Santos A.J.M., Crista D.M.A., Miranda M.S., Almeida I.F., Silva J.P., Costa P.C., Amaral M.H., Lobão P.A.L., Sousa Lobo J.M., da Silva J.C.G.E. 2013. Degradation of UV filters 2-ethylhexyl-4methoxycinnamate and 4-tert-butyl-4- methoxydibenzoylmethane in chlorinated water. Environ Chem, 10(2), 127–134.
  • 23. Sarayu K., Swaminathan K., Sandhya S. 2007. Assessment of degradation of eight commercial reactive azo dyes individually and in mixture in aqueous solution by ozonation. Dyes Pigments, 75, 362–368.
  • 24. Ugurlu M., Karaoglu M.H. 2011. TiO2 supported on sepiolite: Preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chem. Eng. J., 166, 859–867.
  • 25. Vione D., Calza P., Galli F., Fabbri D., Santoro V., Medana C. 2015. The role of direct photolysis and indirct photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters. Sci Total Environ, 537, 58–68.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34c6ffa1-e9d2-42d2-a1c8-dbda310daeac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.