PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Zn and Ca on dissolution rate, mechanical properties and GFA of resorbable Mg–Zn–Ca metallic glasses

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents investigations utility of Mg-based metallic glasses for resorbable orthopedic implants. Exploration of biocompatible Mg–Zn–Ca alloys in order to determine Zn and Ca optimum concentration were conducted, based on three criteria: sufficiently high GFA (glass forming ability), sufficiently high tensile strength, microhardness and the suitable dissolution rate (corrosion rate) in Ringer's solution. Fulfillment of these criteria should ensure bone union before implant dissolution. The optimatization of Ca and Zn concentration in the range of 4–6 at.% Ca and 28–32 at.% Zn was executed. The samples in form of ribbons (0.02–0.05 mm thickness) and rods (about diameter up to 4 mm) with amorphous structure were produced. These investigations allowed to determine the GFA. The optimal results for Mg66Zn30Ca4 and Mg64Zn32Ca4 alloys: tensile strength: 191–166 MPa, microhardness: 291–263 HV and volume of released hydrogen 0.04–0.12 ml/cm2/h. The corrosion studies - immersion and potentiodynamic methods were conducted (including measurement specific corrosion current density for Mg alloys). Finally, a comparative analysis was performed, which indicated the impact of Ca and Zn concentration on: GFA, mechanical properties and dissolution rate of studied metallic glasses.
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] B. Zberg, P.J. Uggowitzer, J.F. Loffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature Materials 8 (2009) 887–891.
  • [2] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer- Lindenberg, C.J. Wirth, et al., In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials 26 (17) (2005) 3557–3563.
  • [3] L.P. Xu, G.N. Yu, E. Zhang, F. Pan, K. Yang, In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application, Journal of Biomedical Materials Research A 83 (3) (2007) 703– 711.
  • [4] Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg– Ca alloys for use as biodegradable materials within bone, Biomaterials 29 (10) (2008) 1329–1344.
  • [5] S.X. Zhang, J.N. Li, Y. Song, C.L. Zhao, X.N. Zhang, C.Y. Xie, et al., In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy, Materials Science and Engineering C 29 (2009) 907–912.
  • [6] E. Zhang, W. He, H. Du, K. Yang, Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content, Materials Science and Engineering A 488 (2008) 102–111.
  • [7] N. Chang Quach, P.J. Uggowitzer, P. Schmutz, Corrosion behaviour of an Mg-Y-RE alloy used in biomedical applications studied by electrochemical techniques, Comptes Rendus Chimie 11 (2008) 1043–1054.
  • [8] N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, F. Feyerabend, Magnesium alloys as implant materials – principles of property design for Mg–RE alloys, Acta Biomaterialia 6 (2010) 1714–1725.
  • [9] X. Gu, G.J. Shiflet, F.Q. Guo, S.J. Poon, Mg–Ca–Zn bulk metallic glasses with high strength and significant ductility, Journal of Materials Research 20 (2005) 1935–1938.
  • [10] Y. Zhao, J. Zhu, L. Chang, J. Song, X. Chen, X. Hui, Influence of Cu content on the mechanical properties and corrosion resistance of Mg-Zn-Ca bulk metallic glasses, International Journal of Minerals, Metallurgy and Materials 21 (5) (2014) 487–493.
  • [11] F. Qin, G. Xie, Z. Dan, S. Zhu, I. Seki, Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys, Intermetallics 42 (2013) 9–13.
  • [12] X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, W. Wang, Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses, Biomaterials 31 (2010) 1093–1104.
  • [13] M. Datta, D. Chou, D. Hong, P. Saha, S. Chung, B. Lee, A. Sirinterlikci, M. Ramanathan, A. Roy, P.N. Kumta, Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying, Materials Science and Engineering B 176 (2011) 1637–1643.
  • [14] E. Ma, J. Xu, Biodegradable alloys: the glass window of opportunities, Nature Materials 8 (2009) 855–857.
  • [15] Q. Li, H. Weng, Z. Suo, Y. Ren, X. Yuan, K. Qiu, Microstructure and mechanical properties of bulk Mg–Zn–Ca amorphous alloys and amorphous matrix composites, Materials Science and Engineering A 487 (2008) 301–308.
  • [16] Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang, X. Zhou, Preparation and characterization of a new biomedical magnesium–calcium alloys, Materials & Design 29 (2008) 2034–2037.
  • [17] S. Lesz, R. Babilas, M. Nabialek, M. Szota, M. Dospial, R. Nowosielski, The characterization of structure, thermal stability and magnetic properties of Fe-Co-B-Si-Nb bulk amorphous and nanocrystalline alloys, Journal of Alloys and Compounds 509 (2011) 197–201.
  • [18] R. Babilas, K. Cesarz-Andraczke, R. Nowosielski, A. Burian, Structure, properties, and crystallization of Mg-Cu-Y-Zn bulk metallic glasses, Journal of Materials Engineering Performance 23 (2014) 2241–2246.
  • [19] Polish standard: PN-EN ISO 17475, Corrosion of metals and alloys. Electrochemical methods research. Guidelines to perform potentiostatic and potentiodynamic tests, 2010.
  • [20] A. Srinivasan, C. Blawert, Y. Huang, C.L. Mendis, K.U. Kainer, N. Hort, Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution, Journal of Magnesium and Alloys 2 (2014) 245–256.
  • [21] Y. Wang, M. Tan, J. Pang, Z. Wang, A.W.E. Jarfors, In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: from amorphous to crystalline, Materials Chemistry and Physics 134 (2012) 1079–1087.
  • [22] N. Abidin, A.D. Atrens, D. Martin, A. Atrens, Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's solution at 37 8C, Corrosion Science 53 (2011) 3542–3556.
  • [23] J. Cao, Processing and Properties of Biocompatible Metallic Glasses, 2013 PhD thesis.
  • [24] B. Świeczko-Żurek, Biomaterials, Gdańsk University of Technology, Gdańsk, 2009.
  • [25] F. Witte, N. Hort, C. Vogt, S. Cohen, K. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Solid State and Materials Science 12 (2008).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34c66eb2-9d37-48e6-bbba-1771099b8925
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.