PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Calculations of the Cast Solidification with the Complex Shape Including the Movement of the Liquid Phase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the computer simulations of solidification with consideration of the liquid phase movement. Simulations were conducted in a real, complex cast. There is a multi-stage resolution to the problem of convection in solidification simulations. The most important resolution concerns the development of the numerical model with the momentum and continuity equations, as well as conditions which are determined by the convection. Simulations were carried out with the use of our authorial software based on stabilized finite elements method (Petroy-Galerkin). In order to solve Navier-Stokes equation (with the convection element), Boussinesq’s approximation were used. Finite Elements Method (FEM) was responsible for the solidification. FEM is close to the heat conduction equation solution (with the internal heat source responsible for the heat released during phase transformation). Convection causes movement in the liquid phase in the solidifying cast and can significantly influence the process of heat transfer from the cast. It may change the distribution of the defects. Results of this article make it possible to assess the conditions in which the influence of the convection on solidification is significant.
Rocznik
Strony
65--70
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Czestochowa, Poland
autor
  • Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] Bokota, A. & Iskierka, S. (1994). Finite element method for solving diffusion-convections problems in the presence of a moving heat point source. Finite Elements in Analysis and Design. 17(2), 89-99.
  • [2] Skrzypczak, A.T., Wegrzyn-Skrzypczak, E. & Winczek, J. (2015). Effect of natural convection on directional solidification of pure metal. Archives of Metallurgy and Materials. 60(2), 835-841.
  • [3] Stefanescu, D.M. (2002). Science and Engineering of Casting Solidification. New York: Kluwer Academic.
  • [4] Feng, W., Xu, Q. & Liu, B. (2002). Microstructure simulation of alluminium alloy using parallel computing technique. ISIJ International. 42(7). 702-707.
  • [5] Michalski, G., Sczygiol, N. (2014). Using CUDA architecture for the computer simulation of the casting solidification process. In Proceedings of the International MultiConference of Engineers and Computer Scientists 2014, IMECS 2014, March 12 - 14, 2014, Hong Kong. Vol II (pp. 933-937).
  • [6] Gawronska, E., Sczygiol, N. (2010). Application of mixed time partitioning methods to raise the efficiency of solidification modelling. In 12th International Symposium on Symbolic and Numeric Algorithms (SYNASC), Sep 23-26, 2010, Timisoara, Romania. (pp. 99-103).
  • [7] Bennon, W.D. & Incropera, F.P. (1987). A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems - I. Model formulation. International Journal of Heat and Mass Transfer. 30(10), 2161-2170.
  • [8] Brezzi, F. (1974). On the existence, uniquess and approximation of saddle-point problems arising from lagrangian multipliers, ESAIM: Mathematical Modelling and Numerical Analysis. 8(R2). 129-151.
  • [9] Brooks, A.N., Hughes, T.J.R. (1990). Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering – Special Edition on the 20th Anniversary. 199-259.
  • [10] Zabaras, N. & Samanta, D. (2004). A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes. International Journal for Numerical Methods in Engineering. 60(5). 1-38.
  • [11] Dyja, R., Gawronska, E. & Grosser, A. (2017). Numerical problems related to solving the Navier-Stokes equations in connection with the heat transfer with the use of FEM. Procedia Engineering. 177, 78-85.
  • [12] Zych, M. (2015). Effect of mass matrix forms on numerical simulation results in heat conduction modelling. Journal of Applied Mathematics and Computational Mechanics. 14(3), 149-156.
  • [13] Kodali, H.K. & Ganapathysubramanian, B. (2012). A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices. Computer Methods in Applied Mechanics and Engineering. 247, 113- 129.
  • [14] Balay, S., Gropp, W.D., McInnes, L.C. & Smith, B.F. (1997). Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. Modern Software Tools in Scientific Computing. 163-202.
  • [15] Dyja, R., Gawrońska, E. & Grosser, A. (2018). A computer simulation of solidification taking into account the movement of the liquid phase. MATEC Web of Conferences. 157. 02008.
  • [16] Galdi, G.P., Heywood, J.G., Rannacher, R. (2000). Fundamental directions in mathematical fluid mechanics. Birkhäuser Verlag.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34c20f0b-3082-4157-9be8-59566436f489
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.