PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal analysis of a gravity-assisted heat pipe working with zirconia-acetone nanofluids: An experimental assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental investigation was performed on the thermal performance and heat transfer characteristics of acetone/zirconia nanofluid in a straight (rod) gravity-assisted heat pipe. The heat pipe was fabricated from copper with a diameter of 15 mm, evaporator-condenser length of 100 mm and adiabatic length of 50 mm. The zirconia-acetone nanofluid was prepared at 0.05–0.15% wt. Influence of heat flux applied to the evaporator, filling ratio, tilt angle and mass concentration of nanofluid on the heat transfer coefficient of heat pipe was investigated. Results showed that the use of nanofluid increases the heat transfer coefficient while decreasing the thermal resistance of the heat pipe. However, for the filling ratio and tilt angle values, the heat transfer coefficient initially increases with an increase in both. However, from a specific value, which was 0.65 for filling ratio and 60–65 deg for tilt angle, the heat transfer coefficient was suppressed. This was attributed to the limitation in the internal space of the heat pipe and also the accumulation of working fluid inside the bottom of the heat pipe due to the large tilt angle. Overall, zirconia-acetone showed a great potential to increase the thermal performance of the heat pipe.
Rocznik
Strony
65--83
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • School of Engineering, University of South Australia, SA 5000, Australia
  • School of Engineering, University of Yazd, Safaeih, Yazd Province, Iran
Bibliografia
  • [1] Faghri A.: Heat pipes: review, opportunities and challenges. Fr. Heat Pipes (FHP) 5(2014), 1, 1–48.
  • [2] Reay D., McGlen R., Kew P.: Heat Pipes: Theory, Design and Applications. Butterworth-Heinemann, Waltham 2013.
  • [3] Faghri A.: Review and advances in heat pipe science and technology. J. Heat Transfer 134(2012), 12, 123001
  • [4] Sarafraz M., Hormozi F.: Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina–glycol based nanofluids. Powder Technol. 266(2014), 378–387.
  • [5] Nakhjavani M., Nikkhah V., Sarafraz M., Shoja S., Sarafraz M.: Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transfer 53(2017),10, 3201–3209.
  • [6] Sarafraz M., Hormozi F., Silakhori M., Peyghambarzadeh S.: On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition. App. Therm. Eng. 95(2016), 433–444.
  • [7] Sarafraz M.M., Peyghambarzadeh S.M.: Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus. Exp. Therm. Fluid Sci. 50(2013), 154–162.
  • [8] Sarafraz M., Hormozi F.: Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids. Period. Polytech. Chem. 58(2014), 1, 37–46.
  • [9] Sarafraz M.M., Safaei M.R.: Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nanosuspension. Renew. Energ. 142(2019), 364-372.
  • [10] Nakhjavani M., Nikounezhad N., Ashtarinezhad A., Shirazi F.H.: Human lung carcinoma reaction against metabolic serum deficiency stress. Iran J. Pharm. Res. (IJPR) 15(2016), 4, 817–823.
  • [11] Nakhjavani M., Stewart D., Shirazi F.: Effect of steroid and serum starvation on a human breast cancer adenocarcinoma cell line. J. Exp. Ther. Oncol. 12(2017),1, 25–34.
  • [12] Nakhjavani M., Vatanpour H., Shahriari F., Mohamadzadehasl B.: Lifesaving effect of lidocaine on Odontobuthos Doriae scorpion envenomation in mice. Am. J. PharmTech Res. 6(2016), 5, 179–190.
  • [13] Nikounezhad N., Nakhjavani M., Shirazi F.: Cellular glutathione level does not predict ovarian cancer cells’ resistance after initial or repeated exposure to cisplatin. J. Exp. Ther. Oncol. 12(2017), 1, 1–7.
  • [14] Shirazi F.H., Zarghi A., Kobarfard F., Zendehdel R., Nakhjavani M., Arfaiee S., Zebardast T., Mohebi S., Anjidani N., Ashtarinezhad A.: Remarks in successful cellular investigations for fighting breast cancer using novel synthetic compounds. In: Breast Cancer-Focusing Tumor Microenvironment, Stem cells and Metastasis (M. Gunduz, Ed.), InTech, 2011.
  • [15] Sarafraz M.M., Hormozi F., Kamalgharibi M.: Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat and Mass Transfer 50(2014), 9, 1237–1249.
  • [16] Pourmehran O., Sarafraz M.M., Rahimi-Gorji M., Ganji D.D.: Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J. Taiwan Inst. Chem. E. 88(2018), 37–48.
  • [17] Tabassum R., Mehmood R., Pourmehran O., Akbar N., Gorji-Bandpy M.: Impact of viscosity variation on oblique flow of Cu–H2O nanofluid. P. I. Mech. Eng. E-J. PRO. 232(2018), 5, 622–631.
  • [18] Yousefi M., Pourmehran O., Gorji-Bandpy M., Inthavong K., Yeo L., Tu J.: CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization. Biomech. Model. Mechan. 16(2017), 6, 2035–2050.
  • [19] Yu W., France D.M., Routbort J.L., Choi S.U.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29(2008), 5, 432–460.
  • [20] Yu W., France D.M., Choi S.U., Routbort J.L.: Review and Assessment of Nanofluid Technology for Transportation and Other Applications. Argonne National Laboratory, ANL/ESD/07-9, 2007.
  • [21] Verma S.K., Tiwari A.K.: Progress of nanofluid application in solar collectors: A review. Energ. Convers. Manage. 100(2015), 324–346.
  • [22] Zhou Y., Cui X, Weng J., Shi S., Han H., Chen C.: Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technol. 332(2018), 371–380.
  • [23] Kavusi H., Toghraie D.: A comprehensive study of the performance of a heat pipe by using of various nanofluids. Adv. Powder Technol. 28(2017), 11, 3074–3084.
  • [24] Pise G.A., Salve S.S., Pise A.T., Pise A.A.: Investigation of solar heat pipe collector using nanofluid and surfactant. Energy Proced. 90(2016). 481–491.
  • [25] Cieśliński J.T.: Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance. Arch. Thermodyn. 37(2016), 2, 23–40.
  • [26] Noie S., Heris S.Z., Kahani M., Nowee S.: Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon. Int. J. Heat Fluid Fl. 30(2009), 4, 700–705.
  • [27] Judd R., Hwang K.: A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. J. Heat Trans. 98(1976), 4, 623–629.
  • [28] Cooper M., Lloyd A.: The microlayer in nucleate pool boiling. Int. J. Heat Mass Tran. 12(1969), 8, 895–913.
  • [29] Kim H.D., Kim M.H.: Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl. Phys. Lett. 91(2007), 014104.
  • [30] Sarafraz M.M., Arjomandi M.: Thermal performance analysis of a microchannel heat sink cooling with copper oxide-indium (CuO/In) nano-suspensions at hightemperatures. Appl. Therm. Eng. 137(2018), 700–709.
  • [31] Abhat A., Seban R.: Boiling and evaporation from heat pipe wicks with water and acetone. J. Heat Trans. 96(1974), 3, 331–337.
  • [32] Kline S.J., McClintock F.A.: Describing uncertainties in single-sample experiments. Mech. Eng. 75(1953), 1, 3–8.
  • [33] Moffat R.J.: Using uncertainty analysis in the planning of an experiment. J. Fluids Eng. 107(1985), 2, 173–178.
  • [34] Sarafraz M.M., Arya A., Nikkhah V., Hormozi F.: Thermal performance and viscosity of biologically produced silver/coconut oil nanofluids. Chem. Biochem. Eng Q. 30(2016), 4, 489–500.
  • [35] Sarafraz M.M.: Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. J. Appl. Fluid Mech. 6(2013), 1, 73–79.
  • [36] Sarafraz M.M., Arjomandi M.: Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: experimental assessment of thermo-hydraulic performance of microchannel. Int. Commun. Heat Mass 94(2018), 39–46.
  • [37] Sarafraz M., Peyghambarzadeh S.: Influence of thermodynamic models on the prediction of pool boiling heat transfer coefficient of dilute binary mixtures. International Commun. Heat Mass Transf. 39(2012), 8, 1303–1310.
  • [38] Chiang K.T., Chou C.C., Liu N.M.: Application of response surface methodology in describing the thermal performances of a pin-fin heat sink. Int. J. Therm. Sci. 48(2009), 6, 1196–205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34bd8563-94fa-43b0-9915-b6159bb2dcfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.