PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring Ecosystem Service Trade-Offs and Synergies for Sustainable Urban Watershed Management in Indonesia – A Case Study of the Citarum River Basin, West Java, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the relationships among ecosystem services (ESs) are crucial for sustainable watershed management. Current studies on ESs often focus on mapping individual services, but there is limited research on the trade-offs and synergies degree (TSD) among them. The objectives of this study are: (i) to map multi-year data for three Ess: water yield (WY), carbon stock (CS), and soil conservation (SC); (ii) to examine the TSD among these ESs; and (iii) to identify the variables that influence TSD. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model was used to map WY, SC, and CS in the Citarum Watershed, Indonesia. Multiscale geographically weighted regression (MGWR) model was employed to explore the relationships between the factors influencing TSD. The results indicate that (1) both WY and CS experienced similar downward trends, decreasing by 18.37% and 2.89% from 2000 to 2010, and by 15.01% and 4.98% from 2010 to 2020, respectively. In contrast, SC increased by 10.60% from 2000 to 2010 and by 12.03% from 2010 to 2020. (2) The TSD analysis revealed significant variations in trade-offs and synergies within the Citarum watershed, with the most prominent TSD occurring between WY and SC (approximately 64%). (3) The driving factors of TSD include vegetation, topography, climate, and social factors, contributing 34.51%, 31.99%, 20.92%, and 11.58%, respectively, to the WY-SC trade-off. The novelty of this research lies in its integration of TSD with the MGWR model, providing valuable insights into the complex spatial relationships between TSD and its driving factors. These findings offer important contributions to sustainable watershed management.
Twórcy
autor
  • Natural Resources and Environmental Management Science Study Program, Graduate School, IPB University, Bogor, 16143, Indonesia
  • Research Center for Limnology and Water Resources, National Research and Innovation Agency of Indonesia, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, 16911, Indonesia
  • Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor, 16680, Indonesia
  • Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor, 16680, Indonesia
  • Research Center for Limnology and Water Resources, National Research and Innovation Agency of Indonesia, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, 16911, Indonesia
  • Research Center for Geoinformatics, National Research and Innovation Agency of Indonesia, Kawasan Sains dan Teknologi Samaun Samadikun, Jl. Sangkuriang, Dago, Kecamatan Coblong, Kota Bandung, 40135, Indonesia
Bibliografia
  • 1. Asadolahi, Z., Salmanmahiny, A., Sakieh, Y., Mirkarimi, S.H., Baral, H., Azimi, M. 2018. Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecological Complexity 36, 250–260. https://doi.org/10.1016/j.ecocom.2018.09.003
  • 2. Citaum org. 2012. Kondisi Fisik dan Spasial. Physical and Spatial Conditions. Available online: http://citarum.org/tentang_1116 kami/sekilas-citarum/kondisi-fisik-dan-spasial.html
  • 3. Dade, M.C., Mitchell, M.G.E., McAlpine, C.A., Rhodes, J.R. 2019. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 48, 1116–1128. https://doi.org/10.1007/s13280-018-1127-7
  • 4. De Steiguer, J., Duberstein, J., Lopes, V. 2003. The analytic hierarchy process as a means for integrated watershed management. Presented at the First interagency conference on research on the watersheds, Agricultural Research Service, US Department of Agriculture, Agricultural pp. 736–740.
  • 5. Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V. 2021. Developing ClimateResilient Crops: Improving Global Food Security and Safety, 1st ed. CRC Press, Boca Raton. https://doi.org/10.1201/9781003109037
  • 6. Fahad, S., Ullah, A., Ali, U., Ali, E., Saud, S., Hakeem, K.R., Alharby, H., Sabagh, A.E., Barutcular, C., Kamran, M. 2019. Drought tolerance in plantsrole of phytohormones and scavenging system of ROS, in: Plant Tolerance to Environmental Stress. CRC Press, pp. 103–114.
  • 7. Feng, J., Chen, F., Tang, F., Wang, F., Liang, K., He, L., Huang, C., 2022. The trade-offs and synergies of ecosystem services in Jiulianshan National Nature Reserve in Jiangxi Province, China. Forests 13, 416.
  • 8. Feng, Q., Zhao, W., Fu, B., Ding, J., Wang, S. 2017. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Science of The Total Environment 607–608, 1250–1263. https://doi.org/10.1016/j.scitotenv.2017.07.079
  • 9. Feng, X., Zhang, T., Feng, P., Li, J. 2022. Evaluation and tradeoff‐synergy analysis of ecosystem services in Luanhe River Basin. Ecohydrology 15, e2473. https://doi.org/10.1002/eco.2473
  • 10. Fotheringham, A.S., Yang, W., Kang, W., 2017. Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers 107, 1247–1265. https://doi.org/10.1080/24694452.2017.1352480
  • 11. Fu, B., Zhang, L., 2014. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr 33, 441–446.
  • 12. Geng, W., Li, Y., Zhang, P., Yang, D., Jing, W., Rong, T., 2022. Analyzing spatio-temporal changes and trade-offs/synergies among ecosystem services in the Yellow River Basin, China. Ecological Indicators 138, 108825. https://doi.org/10.1016/j.ecolind.2022.108825
  • 13. Goldstein, J.H., Caldarone, G., Duarte, T.K., Ennaanay, D., Hannahs, N., Mendoza, G., Polasky, S., Wolny, S., Daily, G.C., 2012. Integrating ecosystem-service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences 109, 7565–7570.
  • 14. Groot, J.C.J., Yalew, S.G., Rossing, W.A.H., 2018. Exploring ecosystem services trade-offs in agricultural landscapes with a multi-objective programming approach. Landscape and Urban Planning 172, 29–36. https://doi.org/10.1016/j.landurbplan.2017.12.008
  • 15. He, J., Shi, X., Fu, Y., Yuan, Y., 2020. Evaluation and simulation of the impact of land use change on ecosystem services trade-offs in ecological restoration areas, China. Land Use Policy 99, 105020.
  • 16. Huang, F., Zuo, L., Gao, J., Jiang, Y., Du, F., Zhang, Y., 2023. Exploring the driving factors of trade-offs and synergies among ecological functional zones based on ecosystem service bundles. Ecological Indicators 146, 109827. https://doi.org/10.1016/j.ecolind.2022.109827
  • 17. Huang, Q., Peng, L., Huang, K., Deng, W., Liu, Y., 2022. Generalized Additive model reveals nonlinear trade-offs/synergies between relationships of ecosystem services for mountainous areas of southwest China. Remote Sensing 14, 2733. https://doi.org/10.3390/rs14122733
  • 18. Infield, E.M.H., Abunnasr, Y., Ryan, R.L., 2018. Planning for climate change: a reader in green infrastructure and sustainable design for resilient cities. Routledge.
  • 19. IPBES, I.S.-P.P. on B. and E.S., 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services.
  • 20. Khairunnisa, F., Tambunan, M.P., Marko, K. 2020. Estimation of soil erosion by USLE model using GIS technique (A case study of upper Citarum Watershed). IOP Conf. Ser.: Earth Environ. Sci. 561, 012038. https://doi.org/10.1088/1755-1315/561/1/012038
  • 21. Lang, Y., Song, W., 2018. Trade-off Analysis of ecosystem services in a Mountainous Karst area, China. Water 10, 300. https://doi.org/10.3390/w10030300
  • 22. Li, Z., Fotheringham, A.S., 2020. Computational improvements to multi-scale geographically weighted regression. International Journal of Geographical Information Science 34, 1378–1397.
  • 23. Liu, L., Zhang, H., Gao, Y., Zhu, W., Liu, X., Xu, Q., 2019. Hotspot identification and interaction analyses of the provisioning of multiple ecosystem services: Case study of Shaanxi Province, China. Ecological Indicators 107, 105566.
  • 24. Locatelli, B., Imbach, P., Wunder, S., 2014. Synergies and trade-offs between ecosystem services in Costa Rica. Environmental Conservation 41, 27–36.
  • 25. Mathys, A.S., Van Vianen, J., Rowland, D., Narulita, S., Palomo, I., Pascual, U., Sutherland, I.J., Ahammad, R., Sunderland, T. 2023. Participatory mapping of ecosystem services across a gradient of agricultural intensification in West Kalimantan, Indonesia. Ecosystems and People 19, 2174685. https://doi.org/10.1080/26395916.2023.2174685
  • 26. McDonnell, J.J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M.L., Selker, J., Weiler, M. 2007. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resources Research 43, 2006WR005467. https://doi.org/10.1029/2006WR005467
  • 27. Nahib, I., Ambarwulan, W., Sutrisno, D., Darmawan, M., Suwarno, Y., Rahadiati, A., Suryanta, J., Prihanto, Y., Rudiastuti, A.W., Gaol, Y.L. 2023. Spatial-temporal heterogeneity and driving factors of water yield services in Citarum river basin unit, West Java, Indonesia. Archives of Environmental Protection 3-24-3–24.
  • 28. Nahib, I., Amhar, F., Wahyudin, Y., Ambarwulan, W., Suwarno, Y., Suwedi, N. 2022. 2 Spatial-temporal changes on water supply and demand on Cita- 3 rum Watershed, West Java, Indonesia using a geospatial ap- 4 proach. 32.
  • 29. Nahib, I., Wahyudin, Y., Amhar, F., Ambarwulan, W., Nugroho, N.P., Pranoto, B., Cahyana, D., Ramadhani, F., Suwedi, N., Darmawan, M., Turmudi, T., Suryanta, J., Karolinoerita, V. 2024a. Analysis of factors influencing spatial distribution of soil erosion under diverse subwatershed based on geospatial perspective: A Case Study at Citarum Watershed, West Java, Indonesia. Scientifica 2024, 1–20. https://doi.org/10.1155/2024/7251691
  • 30. Nahib, I., Wahyudin, Y., Widiatmaka, W., Ambarwulan, W., Amhar, F., Suwedi, N., Darmawan, M., Suryanta, J., Pranoto, B., Ramadhani, F., 2024b. Evaluating the effects of changes in land use and assessing the value of ecosystem services in the Cisadane Watershed, Banten Province, Indonesia. Journal of Infrastructure, Policy and Development 8, 3788.
  • 31. Niu, P., Zhang, E., Feng, Y., Peng, P., 2022. Spatialtemporal pattern analysis of land use and water yield in water source Region of Middle Route of Southto-North water transfer project based on Google Earth Engine. Water 14, 2535.
  • 32. Oshan, T., Li, Z., Kang, W., Wolf, L., Fotheringham, A., 2019. mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. IJGI 8, 269. https://doi.org/10.3390/ijgi8060269
  • 33. Qiao, P., Yang, S., Lei, M., Chen, T., Dong, N. 2019. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Science of The Total Environment 664, 392–413. https://doi.org/10.1016/j.scitotenv.2019.01.310
  • 34. Rao Enming, Xiao Yi, Ouyang Zhiyun, Zheng Hua. 2013. Spatial characteristics of soil conservation service and its impact factors in Hainan Island. Acta Ecologica Sinica, 33, 746–755. https://doi.org/10.5846/stxb201203240400
  • 35. RDC, T. 2009. A language and environment for statistical computing. http://www.R-project.org
  • 36. Ren, B., Wang, Q., Zhang, R., Zhou, X., Wu, X., Zhang, Q., 2022. Assessment of ecosystem services: spatio-temporal analysis and the spatial response of influencing factors in Hainan Province. Sustainability 14, 9145. https://doi.org/10.3390/su14159145
  • 37. Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., Chaumont, N., Denu, D., Fisher, D., Glowinski, K. 2020. InVEST 3.8. 7. User’s Guide. The Natural Capital Project, Standford University, University of Minnesota, The Natural Capital Project.
  • 38. Su, C., Fu, B. 2013. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Global and Planetary Change 101, 119–128. https://doi.org/10.1016/j.gloplacha.2012.12.014
  • 39. Turner, K.G., Odgaard, M.V., Bøcher, P.K., Dalgaard, T., Svenning, J.-C., 2014. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landscape and Urban Planning 125, 89–104.
  • 40. Tussadiah, A., Sujiwo, A.S., Andesta, I., Daeli, W., 2021. Assessment of coastal ecosystem services and its condition for policy management plan in East Nusa Tenggara, Indonesia. Regional Studies in Marine Science 47. https://doi.org/10.1016/j.rsma.2021.101941
  • 41. Wang, H., Zhou, S., Li, X., Liu, H., Chi, D., Xu, K., 2016. The influence of climate change and human activities on ecosystem service value. Ecological Engineering 87, 224–239.
  • 42. Wang, K., Li, S., Zhu, Z., Gao, X., Li, X., Tang, W., Liang, J., 2023. Identification of priority conservation areas based on ecosystem services and systematic conservation planning analysis. Environmental Science and Pollution Research 30, 36573–36587. https://doi.org/10.1007/s11356-022-24883-9
  • 43. Wang, L.-J., Ma, S., Qiao, Y.-P., Zhang, J.-C., 2020. Simulating the impact of future climate change and ecological restoration on trade-offs and synergies of ecosystem services in two ecological shelters and three belts in China. International Journal of Environmental Research and Public Health 17, 7849.
  • 44. Wang, P., Zhang, L., Li, Y., Jiao, L., Wang, H., Yan, J., Lv, Y., Fu, B., 2017. Spatio-temporal characteristics of the trade-off and synergy relationships among multiple ecosystem services in the Upper Reaches of Hanjiang River Basin. Acta Geogr. Sin 72, 2064–2078.
  • 45. Wang, Q., Jiang, D., Gao, Y., Zhang, Z., Chang, Q., 2022. Examining the driving factors of SOM using a multi-scale GWR Model Augmented by Geo-Detector and GWPCA Analysis. Agronomy 12, 1697. https://doi.org/10.3390/agronomy12071697
  • 46. Wei, J., Hu, A., Gan, X., Zhao, X., Huang, Y., 2022a. Spatial and temporal characteristics of ecosystem service trade-off and synergy relationships in the Western Sichuan Plateau, China. Forests 13, 1845. https://doi.org/10.3390/f13111845
  • 47. Wei, J., Hu, A., Gan, X., Zhao, X., Huang, Y., 2022b. Spatial and temporal characteristics of ecosystem service trade-off and synergy relationships in the Western Sichuan Plateau, China. Forests 13, 1845.
  • 48. Xue, D., Wang, Z., Li, Y., Liu, M., Wei, H., 2022. Assessment of ecosystem services supply and demand (Mis)matches for urban ecological management: A Case study in the Zhengzhou–Kaifeng– Luoyang Cities. Remote Sensing 14, 1703. https://doi.org/10.3390/rs14071703
  • 49. Yan, X., Li, L., 2023. Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia. J. Arid Land 15, 1–19. https://doi.org/10.1007/s40333-022-0074-0
  • 50. Yulianto, F., Khomarudin, M.R., Hermawan, E., Budhiman, S., Sofan, P., Chulafak, G.A., Nugroho, N.P., Brahmantara, R.P., Nugroho, G., Priyanto, E., Fitriana, H.L., Setiyoko, A., Sakti, A.D., 2022. Flood inundation modelling using an RProFIM approach based on the scenarios of landuse/landcover change and return periods differences in the upstream Citarum watershed, West Java, Indonesia (preprint). In Review.
  • 51. Zhang, Z., Liu, Yanfang, Wang, Y., Liu, Yaolin, Zhang, Yan, Zhang, Yang, 2020. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? Journal of Cleaner Production 257, 120454.
  • 52. Zhang, Z., Wan, H., Peng, S., Huang, L., 2023. Differentiated factors drive the spatial heterogeneity of ecosystem services in Xinjiang Autonomous Region, China. Front. Ecol. Evol. 11, 1168313. https://doi.org/10.3389/fevo.2023.1168313
  • 53. Zhao, J., Li, C., 2022. Investigating ecosystem service trade-offs/synergies and their influencing factors in the Yangtze River Delta Region, China. Land 11, 106. https://doi.org/10.3390/land11010106
  • 54. Zhou, J., Zhang, B., Zhang, Y., Su, Y., Chen, J., Zhang, X., 2023. Research on the trade-Offs and synergies of ecosystem services and their impact factors in the Taohe River Basin. Sustainability 15, 9689. https://doi.org/10.3390/su15129689
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34bd6e56-715b-41b1-b233-c1fcbd887f3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.