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Abstract

Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and
its control is one of the recent research topics related to the field of autonomous MAVs.
Some desiring features of the FW MAV are quick flight, vertical take-off and landing, hov-
ering, and fast turn, and enhanced manoeuvrability contrasted with similar-sized fixed and
rotary wing MAVs. Inspired by the FW MAV’s advanced features, a four-wing Nature-
inspired (NI) FW MAV is modelled and controlled in this work. The Fuzzy C-Means
(FCM) clustering algorithm is utilized to construct the data-driven NIFW MAV model.
Being model free, it does not depend on the system dynamics and can incorporate various
uncertainties like sensor error, wind gust etc. Furthermore, a Takagi-Sugeno (T-S) fuzzy
structure based adaptive fuzzy controller is proposed. The proposed adaptive controller
can tune its antecedent and consequent parameters using FCM clustering technique. This
controller is employed to control the altitude of the NIFW MAV, and compared with a
standalone Proportional Integral Derivative (PID) controller, and a Sliding Mode Control
(SMC) theory based advanced controller. Parameter adaptation of the proposed controller
helps to outperform it static PID counterpart. Performance of our controller is also com-
parable with its advanced and complex counterpart namely SMC-Fuzzy controller.
Keywords: adaptive fuzzy, clustering, flapping wing, micro air vehicle

1 Introduction

Nowadays, the application of autonomous sys-
tems in thecivil and military sector has increased
significantly due to the advancement in control the-
ory and electronics devices. Among various au-
tonomous systems, significant effort is invested
in modelling and controlling Micro Air Vehicles

(MAVs), and this is one of the latest research topics
in the field of autonomous Unmanned Aerial Vehi-
cles (UAVs). By definition MAVs usually have a
maximum dimension of 150 mm, their size can be
similar to a small bird, and they have a flight ve-
locity of 10-20 ms−1. Among these MAVs, very
recently, nature-inspired flapping wing (NIFW)
MAVs are becoming popular among researchers.
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Sharp developments in micro-manufacturing tech-
niques have made NIFW MAVs easily realisable.
They are smaller in size and requires comparatively
lower power than their fixed wings counterpart. The
smaller size also provides them with the capabil-
ity to perform at lower Reynolds numbers which
cannot be obtained from rotary wing UAVs. Fur-
thermore, these NIFW MAVs are able to facilitate
a huge range of vital manoeuvres like vertical take-
off and landing, gliding, roll banking, backward and
sideways flying, which are not possible for similar
sized fixed or rotary wing UAVs. Besides, NIFW
MAVs have impressive potential in generating rapid
acceleration during manoeuvres. The major bene-
fits and feasibility of utilizing NIFW as MAV are
described in [1]. These huge benefits of NIFW
MAVs over other fixed and rotary wing UAVs have
made them worthy of investigation. The flight dy-
namics of NIFW MAVs, whether bird inspired or
insect-inspired is more complex than their rotary or
fixed-wing counterparts, since the flight solely de-
pends on the beating motion of the flapping wings.
Therefore, researchers have investigated the flight
dynamics of various flapping wing creatures in the
last two decades [2, 3, 4, 5, 6, 7, 8]. By analysing
various features of nature-inspired flapping flight,
the emphasis on developing NIFW MAVs is in-
creasing in recent times [9, 10, 11].

Among different flying insects, dragonflies are
one of the oldest with preferred mobility than most
other insects as portrayed in [12, 13, 14, 15]. A
dragonfly has four wings with the ability of quick
flight, hovering, and fast moves. Inspired by their
desired nature, specialists are attempting to develop
Dragonfly liked FW MAV (DLFW MAV) model
and trying to enhance their control precision. Lin-
ear and non-linear dynamics of a DL MAV was de-
veloped in [16] from flight test information. Be-
sides, a sliding mode control theory based adaptive
controller was proposed in their work to stabilize
the longitudinal dynamics. However, their devel-
oped MAV was a fixed wing model. A self-learning
wing actuation system around a system of bear-
ings for Dragonfly-inspired MAV (DI-MAV) was
fabricated in [17]. They used three solenoids to
generate three degrees of freedom motion from a
wing, where the solenoids are controlled by a mo-
tor driver. The drivers got sinusoidal signals from a
workstation desktop computer. A numerical model
of a dragonfly robot was developed in [12]. The

model was tested with an ordinary PID and frac-
tional order PID control algorithms in a simulation.
Their simulated model was able to mimic the kine-
matics and dynamics of a dragonfly. An insect-
based FW MAV was fabricated in [18], which con-
sisted of two fixed and two flapping wings. Their
FW MAV can generate adequate vertical thrust to
lift-off a weight of 14.76 grams at 10 Hz frequency.
The maximum achievable flapping frequency was
12.4 Hz, which produced an average vertical thrust
to lift-off a weight of nearby 24 grams at an ap-
plied voltage of 3.7 V. Their FW-MAV exhibited
a fruitful free flight with an acceptable control ac-
curacy. A flight controller by utilizing a Linear
Quadratic Regulator (LQR) technique was devel-
oped in [19] for DLFW MAV. Their DLFW MAV
model was linearised to fit with the LQR flight con-
troller. Besides, they have used an iterative learn-
ing based tuner to tune the input weighting matrix
of LQR to deal with un-modelled parameters. To
summarize, up to this point most of the strategies
to model and control the FW MAV depend on first
principle procedures, the exact numerical model is
compulsory to manage their performance. Never-
theless, the FW MAVs are profoundly nonlinear and
over-actuated systems. They may contain different
vulnerabilities. An exact numerical model of FW
MAVs considering these features is challenging to
achieve. A smart solution to these issues is the
employment of model-free knowledge-based data-
driven techniques.

The data-driven modelling and control can play
an important role in NIFW MAV system since they
don’t require any mathematical model. Some of the
commonly used non-linear data-driven modelling
and control techniques are describing the function
method, block structured systems, fuzzy logic, neu-
ral networks, and Nonlinear Autoregressive Mov-
ing Average Model with Exogenous inputs (NAR-
MAX methods). Among these techniques, fuzzy
logic and neural network systems are promising
since they demonstrate learning capability from a
set of data and approximate reasoning trait of hu-
man beings. They can cope with the impreci-
sion and uncertainty of the decision-making pro-
cess. In recent times fuzzy logic and neural net-
works are employed to model and control various
MAVs [20, 21, 22, 23, 24, 25, 26, 27, 28].
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A Spiking Neural Network (SNN) to control an
FW MAV called RoboBee was proposed in [29]. In
[30], a Neural Immunology Network (NIN) based
controller was proposed. NIN was inspired by the
memory and immune system. Their controller can
control the motion of FW MAVs by considering
various system non-linearities. Besides, their con-
trol method can deal effectively with external per-
turbations and parameter variations since they do
not need any precise dynamics model. A direct
adaptive (DA) and hybrid adaptive fuzzy controller
(HAFC) was developed in [31] to control dragonfly-
like FW MAV model by simulation. Better tra-
jectory tracking performance is observed from the
HAFC than the DAFC.

Due to the successful implementation and eval-
uation of various neuro and fuzzy technique in FW
MAV, in this work a FCM clustering based T-S
fuzzy system is utilized to identify the FW MAV.
In addition, a PD-like adaptive fuzzy controller is
developed to control the altitude of the FW MAV.

2 Fuzzy Modelling and Adaptive
Control of Flapping Wing Micro-
Air Vehicle

The FW MAV used in our work is a simulated
nature-inspired insect robot with four wings. The
development process of the NIFW MAV flight sim-
ulator is described in [32]. From this flight simula-
tor the data has been collected to develop the fuzzy
based identification and an adaptive controller. Due
to the high cost and time consumption to develop
and set-up experimental flight test, the utilization of
such flight simulators are usual. In this flight simu-
lator, the wing kinematics for a wing flapping in an
inclined stroke plane are obtained from the deriva-
tion described in [33]. The flapping angle (ϕ) in the
flapping profile of the FW MAV can be expressed
as follows

ϕ(t) =
ϕ f a

2
cos(π f t), (1)

where ϕ f a is the flapping amplitude in radian, f is
the flapping frequency in Hz, t is the time is second.
The angle of attack (α) can be presented as

α = αma −α0sin(ωdt +ψ), (2)

where αma is mean angle of attack in radian, α0 is
an amplitude of pitching oscillation in radian, dt is

time step in seconds and ψ is the phase difference
between the pitching and plunging motion. All the
four wings of the FW MAV follows the same flap-
ping profile.

In the simulator, each wing is controlled by an
actuator. A symbolic diagram or body coordination
of four wing, NIFW MAV is exhibited in Figure 1.

Figure 1. Body coordination of a NIFW MAV.
Numbers indicate the actuator number

Each actuator is controlled by eight (8) flapping
parameters namely 1) stroke plane angle (in rad), 2)
flapping frequency (in Hz), 3) flapping amplitude
(in rad), 4) mean angle of attack (inrad), 5) ampli-
tude of pitching oscillation (in rad), 6) phase dif-
ference between the pitching and plunging motion,
7) time step (in sec), 8) kappa, set as zero in the
plant. A parametric analysis is accomplished to find
the dominant flapping parameter. After a complete
parametric analysis, it is observed that among eight
parameters the flapping amplitude is the dominant
one to control the NIFW MAV. Effects of changing
the flapping amplitude to some major manoeuvring
of a NIFW MAV are summarized in Table 1.

Table 1. Effects of flapping amplitude in different
manoeuvring of NIFW MAV

Actuators Flapping
amplitude, ϕ0

(degree)

Action

1, 2, 3, 4 90 Take-off
1, 2 and 3, 4 90 and 60 Roll-right
1, 2 and 3, 4 60 and 90 Roll-left
1, 3 and 2, 4 90 and 60 Pitch-up
1, 3 and 2, 4 60 and 90 Pitch-down
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2.1 Fuzzy Clustering Based Modelling of
the NIFW MAV

From the NIFW MAV flight simulator,
the input-output data is collected to develop
the data-driven model, where the four in-
put datasets (u1(t),u2(t),u3(t),u4(t)) are the
four flapping amplitudes applied to four actu-
ators. The three-dimensional (3D) rotational
velocities (ωbx,ωby,ωbz) and translational ve-
locities (vbx,vby,vbz) of the NIFW MAV body
are six output datasets. These four inputs
(u1(t),u2(t),u3(t),u4(t)) and delayed outputs
(ωbx(t −1),ωby(t−1),ωbz(t−1),vbx(t−1),vby(t−
1),vbz(t − 1)) are the inputs to the Multi-Input
Multi-output (MIMO) nonlinear NIFW MAV
model, which can be expressed as follows

FW (t) = f
(
u1(t),u2(t),u3(t),u4(t),ωbx(t −1),

ωby(t −1),ωbz(t −1),vbx(t −1),vby(t −1),vbz(t −1)
)
,

(3)

where FW (t) is the MIMO NIFW MAV model. In
FCM, a data sample may belong to more than one
cluster with a degree of belongingness that varies
between 0 to 1, where the integration of degrees of
belongingness of a data sample to all groups is al-
ways one as expressed below

c

∑
i=1

µi j = 1, ∀ j = 1, ...,n, (4)

where, i = 1,2, ...,c; c is the number of clusters,
j = 1,2, ...,n; n is the number of inputs.

However, the FCM still requires a cost func-
tion to be minimized during partitioning the data
set. The cost function in FCM can be expressed
as follows

J(X ;U,V ) =
c

∑
i=1

Ji =
c

∑
i=1

n

∑
j=1

µm
i jd

2
i j, (5)

where U = [µ1 j,µ2 j, ...,µc j] is a fuzzy partition ma-
trix of dataset X , and X = {x1,x2, ...,xn}; V =
[v1,v2, ...,vc] is a vector of cluster centers, vi ∈ ℜ;
µi j ranges between 0 to 1; d ji = ||x ji − v ji|| is the
Euclidian distance between the i− th cluster centre
and i− th data point for the j− th rule; m ∈ [1,∞)
is a weighting exponent.

The two conditions to reach the minimum for

Equation (5) are as follows

yi =

n
∑
j=1

µm
i jx j

n
∑
j=1

µm
i j

, (6)

µi j =
1

c
∑

k=1

( di j
dk j

)2/(m−1)
. (7)

The FCM algorithm repeatedly performs
through Equation (6) and (7) until no more im-
provement is observed. The efficiency of Equation
(6) and (7) and convergence of the FCM algorithm
is proven in [34].

In batch training operation, the algorithm of
FCM based T-S fuzzy model to determine the clus-
ter centres vi and the membership matrix U is pre-
sented in Algorithm below.

In FCM, the performance has a dependency on
the initial membership matrix values, which suggest
running the algorithm for a few times.

2.2 Development of Adaptive Fuzzy Con-
troller

A T-S fuzzy structure has been utilized to de-
velop the adaptive fuzzy controller in this work.
The FCM clustering technique is utilized to adapt
the premise parameters such as centres and widths
of the membership function of the controller. It has

[v1,v2, ...,vc] is a vector of cluster centers, vi ∈ ℜ;
µi j ranges between 0 to 1; d ji = ||x ji−v ji|| is the Eu-
clidian distance between the i− th cluster centre and
i− th data point for the j − th rule; m ∈ [1,∞) is a
weighting exponent.

The two conditions to reach the minimum for
Equation (5) are as follows:

yi =

n
∑
j=1

µm
i jx j

n
∑
j=1

µm
i j

(6)

µi j =
1

c
∑

k=1

( di j
dk j

)2/(m−1)
(7)

The FCM algorithm repeatedly performs through
Equation (6) and (7) until no more improvement is
observed. The efficiency of Equation (6) and (7) and
convergence of the FCM algorithm is proven in [34].

In batch training operation, the algorithm of FCM
based T-S fuzzy model to determine the cluster cen-
tres vi and the membership matrix U is presented in
Algorithm below. In FCM, the performance has de-
pendency on the initial membership matrix values,
which suggest running the algorithm for few times.

2.2 Development of Adaptive Fuzzy Con-
troller

A T-S fuzzy structure has been utilized to develop
the adaptive fuzzy controller in this work. The FCM
clustering technique is utilized to adapt the premise
parameters such as centres and widths of the mem-
bership function of the controller. It has also been
utilized to adapt the consequent part of T-S fuzzy
system of the adaptive controller. The proposed con-
troller is trained with a stable PD controller, which
has been exposed in Figure 2. However, the fuzzy

Algorithm FCM based T-S fuzzy model
Input: Input/target pair
Output: Identified output

Initialisation :
1: Initialize the membership matrix Y with random

values ranging between 0 to 1 such a way to sat-
isfy the constraints in Equation (4).
LOOP Process

2: for i = 1 to c do
3: Calculate the cluster centres yi using Equation

(5)
4: if (Cost function> Threshold) then
5: ADD new rule
6: else
7: Identified output=evalfis(input(i))
8: end if
9: end for

10: return Identified output=evalfis(input(i))

controller performs better than the static PD con-
troller since the fuzzy controller can adapt its param-
eter using FCM technique. The closed-loop adap-
tive control system is exhibited in Figure 3. The
difference between the reference signal and plants
output i.e. the error (e(t)) is one of the inputs to
the controller, and the rate of change of that error
(de(t)/dt) is another input to the controller, which is
presented in the input layer of Figure 3. These crisp
inputs are being fuzzified in the fuzzification layer,
where Gaussian membership functions are utilized.
To get the desired signal from the FW MAV model,
the fuzzy controller alters the Gaussian membership
functions width and centres by utilizing the FCM
clustering technique, where the error signal e(t) is
utilized as a cost function for the FCM clustering.
After this, the ’AND’ operation i.e. the product of
all membership functions are obtained. Finally, out-
put of the adaptive fuzzy controller is calculated in

5
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also been utilized to adapt the consequent part of
T-S fuzzy system of the adaptive controller. The
proposed controller is trained with a stable PD con-
troller, which has been exposed in Figure 2. How-
ever, the fuzzy controller performs better than the
static PD controller since the fuzzy controller can
adapt its parameter using FCM technique. The
closed-loop adaptive control system is exhibited in
Figure 3. The difference between the reference sig-
nal and plants output i.e. the error (e(t)) is one of
the inputs to the controller, and the rate of change
of that error (de(t)/dt) is another input to the con-
troller, which is presented in the input layer of Fig-
ure 3. These crisp inputs are being fuzzified in
the fuzzification layer, where Gaussian membership
functions are utilized. To get the desired signal from
the FW MAV model, the fuzzy controller alters the
Gaussian membership functions width and centres
by utilizing the FCM clustering technique, where
the error signal e(t) is utilized as a cost function for
the FCM clustering. After this, the ’AND’ opera-
tion i.e. the product of all membership functions
are obtained. Finally, output of the adaptive fuzzy
controller is calculated in the output layer as follows

yi =

N
∑

i=1
wizi

N
∑

i=1
wi

= Ψ.Θ, (8)

where i = 1,2, ...,N; N is the number of rules, Ψ is
the product of normalized firing strength and input
vector, and Θ is the vector of consequent parameter,
wi is the rule firing strength of the i−th rule and can
be expressed as

wi =
n

∏
j=1

µi
A j
, (9)

where j = 1,2, ...,n; n is the number of inputs, µi
A j

is
the membership function of the i−th rule and j−th
input. In this work, Gaussian membership function
is employed and can be expressed as:

µi
A j

= exp


−1

2

(
x j − vi

j

σi
j

)2

 , (10)

where vi
j is the center and σi

j is the width of the
Gaussian membership function for the i − th rule
and j− th input. In Figure 3, the zi = a0 j +a1ix1 +
a2ix2 + ...+anixn is expressing the consequent part

of the i − th rule, where a0,a1,a2, ...,an are con-
sequent parameters of that rule. In this work, the
inputs are x1 = e and x2 = ė. The controller’s out-
put signal goes to the identified NIFW MAV model.
Then the model’s output is integrated to get the ver-
tical altitude from velocity, and compared with the
reference position. The controller tunes its param-
eter until the model output follows the reference
signal, and consequently, the error signal (e(t)) be-
comes zero. In this FCM based adaptive fuzzy con-
troller, five Gaussian membership functions are uti-
lized. Vectors of Initial centers for those member-
ship functions are [-7.386 -4.93 -1.443 2.531 6.483]
and [-38.24 -26.62 -8.747 13.63 36.7] respectively
for the error e and a derivative of error ė, whereas
the vectors of widths are [5.837 5.055 5.667 6.274
5.856] and [27.21 24.65 27.3 29.43 26.3] for e and
ė respectively.

Stability Analysis of the Adaptive Fuzzy Con-
troller:

Usually, the stability test requires a mathemat-
ical model of the plant to be controlled. However,
attaining a proper mathematical model of a highly
non-linear over-actuated system like NIFW MAV is
too difficult. In such situation, the model free adap-
tive fuzzy controller is an appropriate solution. In
this work, the closed-loop stability of the adaptive
fuzzy controller is ensured with the assistance of the
PD controller as explained and proved in [27, 35].

Theorem 1 The adaptation laws for the proposed
adaptive fuzzy controller are expressed as

Θ̇(t) =−kpH(t)Ψ(t)sl(t), (11)

where Θ(0) = Θ0 ∈ ℜnR×1,

where n is the number of inputs, R is the number of
rules, Θ0 is the initial value of Θ. The term H(t) of
Equation (11) can be updated recursively as follows

Ḣ(t) =−H(t)Ψ(t)ΨT (t)H(t), (12)

where H(0) = H0 ∈ ℜnR×nR, H0 is the initial value
of H. n is presenting the number of inputs to the
controller, and R is the number of rules. These
adaptation laws assure a stable closed-loop control
system.
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Figure 2. Training of FCM based fuzzy adaptive control system from a stable PD controller

Figure 3. Closed-loop block diagram of FCM based fuzzy adaptive control system
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Figure 4. Input: Flapping amplitude

Figure 5. Identification of FW MAVs translational
velocity (vbx,vby,vbz)

3 Results and Discussion

The data used for the MIMO nonlinear NIFW
MAV system identification is based on a 100 sec-
onds simulation in Simulink with a time step of

0.01 seconds. In a physical NIFW MAV model,
it can change its flapping amplitude within a cer-
tain range, which is between −90◦ and 90◦. There-
fore, a sinusoidal flapping amplitude varying be-
tween −90◦ and 90◦ is applied to each actuator of
all four wings of the NIFW MAV as shown in Fig-
ure 4, which helps the FCM clustering based NIFW
MAV model to get the input datasets within the
maximum range. In this technique, T-S fuzzy model
with three (3) Gaussian membership function is uti-
lized. From Figure 5 and Figure 6 it is clearly ob-
served that all the translation velocities (vbx,vby, and
vbz), and the rotational velocities (ωbx, ωby, and ωbz)
are identified with a negligible error.

The adaptive T-S fuzzy controller’s perfor-
mance is evaluated with respect to various refer-
ence signals and the performance is compared with
a PID controller, and SMC theory based fuzzy con-
troller developed in [36]. In this work, the consid-
ered trajectories for tracking altitude are as follows:
1) constant height of 10 m; 2) sinusoidal wave func-
tion with an amplitude of 1 m and frequency of 1
Hz; 3) square wave function with an amplitude of
1 m and frequency of 0.1 Hz; and 4) different step
functions. In all the figures, the proposed controller
is named as ”FCM-TS-Fuzzy”, whereas the bench-
marked controllers are named as ”SMC-Fuzzy”,
and ”PID”. At first, tracking performance of the
controllers are observed for a trajectory of constant
height. The results are observed in Figure 7, from
where it is observed that the proposed controller
performs better than the PID controller. The per-
formance is also comparable with SMC-Fuzzy con-
troller. Besides, comparatively higher overshoot is
observed from the PID controller at the transient
state. After that, the performance is witnessed for
a sinusoidal reference signal, where an improved
performance is observed from the FCM-TS-Fuzzy
controller as exposed in Figure 8. A square wave
pulse signal is also inserted into the closed loop sys-
tem to observe the efficacy of the proposed adaptive
fuzzy controller. Our proposed controller outper-
forms the PID and SMC-Fuzzy controller as shown
in Figure 9. Finally, three different types of step
functions such as Zbd (t) = 10u(t − 20), Zbd (t) =
5u(t)+ 5u(t − 20), Zbd (t) = −5u(t)+ 10u(t − 20)
are used as reference signal to check the proposed
controller’s performance. Here u(t) is a unit step
function. Satisfactory and better performance than
the PID controller is recorded in all cases as shown
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(a) Translational velocity (vbx)

(b) Translational velocity (vby)

(c) Translational velocity (vbz)

Figure 5: Identification of FW MAVs translational
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The adaptive T-S fuzzy controller’s perfor-
mance is evaluated with respect to various refer-
ence signals and the performance is compared with
a PID controller, and SMC theory based fuzzy con-
troller developed in [36]. In this work, the con-
sidered trajectories for tracking altitude are as fol-
lows: 1) constant height of 10 m; 2) sinusoidal
wave function with an amplitude of 1 m and fre-
quency of 1 Hz; 3) square wave function with an
amplitude of 1 m and frequency of 0.1 Hz; and
4) different step functions. In all the figures, the
proposed controller is named as ”FCM-TS-Fuzzy”,
whereas the benchmarked controllers are named
as ”SMC-Fuzzy”, and ”PID”. At first, tracking
performance of the controllers are observed for a
trajectory of constant height. The results are ob-

served in Figure 12, from where it is observed that
the proposed controller performs better than the
PID controller. The performance is also compa-
rable with SMC-Fuzzy controller. Besides, com-
paratively higher overshoot is observed from the
PID controller at the transient state. After that, the
performance is witnessed for a sinusoidal reference
signal, where an improved performance is observed
from the FCM-TS-Fuzzy controller as exposed in
Figure 13. A square wave pulse signal is also in-
serted into the closed loop system to observe the
efficacy of the proposed adaptive fuzzy controller.
Our proposed controller outperforms the PID and
SMC-Fuzzy controller as shown in Figure 14. Fi-
nally, three different types of step functions such as
Zbd (t) = 10u(t − 20), Zbd (t) = 5u(t) + 5u(t − 20),
Zbd (t) =−5u(t)+10u(t−20) are used as reference
signal to check the proposed controller’s perfor-
mance. Here u(t) is a unit step function. Satisfac-
tory and better performance than the PID controller
is recorded in all cases as shown in Figure 15,
Figure 16, and Figure 17. The SMC-Fuzzy con-
troller performs slightly better than the proposed
controller. However, the results are comparable
with a simple structure of the proposed controller
compare to the SMC-Fuzzy controller. Besides,
the root mean square error (RMSE) for PID, SMC-
Fuzzy and the proposed adaptive fuzzy controller
in all cases are tabulated in Table ??, where RMSEs
of the fuzzy controller are less than the PID con-
troller, and very close to the SMC-Fuzzy controller.

(a) Rotational velocity (ωby)
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The adaptive T-S fuzzy controller’s perfor-
mance is evaluated with respect to various refer-
ence signals and the performance is compared with
a PID controller, and SMC theory based fuzzy con-
troller developed in [36]. In this work, the con-
sidered trajectories for tracking altitude are as fol-
lows: 1) constant height of 10 m; 2) sinusoidal
wave function with an amplitude of 1 m and fre-
quency of 1 Hz; 3) square wave function with an
amplitude of 1 m and frequency of 0.1 Hz; and
4) different step functions. In all the figures, the
proposed controller is named as ”FCM-TS-Fuzzy”,
whereas the benchmarked controllers are named
as ”SMC-Fuzzy”, and ”PID”. At first, tracking
performance of the controllers are observed for a
trajectory of constant height. The results are ob-

served in Figure 12, from where it is observed that
the proposed controller performs better than the
PID controller. The performance is also compa-
rable with SMC-Fuzzy controller. Besides, com-
paratively higher overshoot is observed from the
PID controller at the transient state. After that, the
performance is witnessed for a sinusoidal reference
signal, where an improved performance is observed
from the FCM-TS-Fuzzy controller as exposed in
Figure 13. A square wave pulse signal is also in-
serted into the closed loop system to observe the
efficacy of the proposed adaptive fuzzy controller.
Our proposed controller outperforms the PID and
SMC-Fuzzy controller as shown in Figure 14. Fi-
nally, three different types of step functions such as
Zbd (t) = 10u(t − 20), Zbd (t) = 5u(t) + 5u(t − 20),
Zbd (t) =−5u(t)+10u(t−20) are used as reference
signal to check the proposed controller’s perfor-
mance. Here u(t) is a unit step function. Satisfac-
tory and better performance than the PID controller
is recorded in all cases as shown in Figure 15,
Figure 16, and Figure 17. The SMC-Fuzzy con-
troller performs slightly better than the proposed
controller. However, the results are comparable
with a simple structure of the proposed controller
compare to the SMC-Fuzzy controller. Besides,
the root mean square error (RMSE) for PID, SMC-
Fuzzy and the proposed adaptive fuzzy controller
in all cases are tabulated in Table ??, where RMSEs
of the fuzzy controller are less than the PID con-
troller, and very close to the SMC-Fuzzy controller.

(a) Rotational velocity (ωby)

DEVELOPMENT OF C-MEANS CLUSTERING BASED . . .

(a) Translational velocity (vbx)

(b) Translational velocity (vby)

(c) Translational velocity (vbz)

Figure 5: Identification of FW MAVs translational
velocity (vbx,vby,vbz)

The adaptive T-S fuzzy controller’s perfor-
mance is evaluated with respect to various refer-
ence signals and the performance is compared with
a PID controller, and SMC theory based fuzzy con-
troller developed in [36]. In this work, the con-
sidered trajectories for tracking altitude are as fol-
lows: 1) constant height of 10 m; 2) sinusoidal
wave function with an amplitude of 1 m and fre-
quency of 1 Hz; 3) square wave function with an
amplitude of 1 m and frequency of 0.1 Hz; and
4) different step functions. In all the figures, the
proposed controller is named as ”FCM-TS-Fuzzy”,
whereas the benchmarked controllers are named
as ”SMC-Fuzzy”, and ”PID”. At first, tracking
performance of the controllers are observed for a
trajectory of constant height. The results are ob-

served in Figure 12, from where it is observed that
the proposed controller performs better than the
PID controller. The performance is also compa-
rable with SMC-Fuzzy controller. Besides, com-
paratively higher overshoot is observed from the
PID controller at the transient state. After that, the
performance is witnessed for a sinusoidal reference
signal, where an improved performance is observed
from the FCM-TS-Fuzzy controller as exposed in
Figure 13. A square wave pulse signal is also in-
serted into the closed loop system to observe the
efficacy of the proposed adaptive fuzzy controller.
Our proposed controller outperforms the PID and
SMC-Fuzzy controller as shown in Figure 14. Fi-
nally, three different types of step functions such as
Zbd (t) = 10u(t − 20), Zbd (t) = 5u(t) + 5u(t − 20),
Zbd (t) =−5u(t)+10u(t−20) are used as reference
signal to check the proposed controller’s perfor-
mance. Here u(t) is a unit step function. Satisfac-
tory and better performance than the PID controller
is recorded in all cases as shown in Figure 15,
Figure 16, and Figure 17. The SMC-Fuzzy con-
troller performs slightly better than the proposed
controller. However, the results are comparable
with a simple structure of the proposed controller
compare to the SMC-Fuzzy controller. Besides,
the root mean square error (RMSE) for PID, SMC-
Fuzzy and the proposed adaptive fuzzy controller
in all cases are tabulated in Table ??, where RMSEs
of the fuzzy controller are less than the PID con-
troller, and very close to the SMC-Fuzzy controller.

(a) Rotational velocity (ωby)
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in Figure 10, Figure 11, and Figure 12. The SMC-
Fuzzy controller performs slightly better than the
proposed controller. However, the results are com-
parable with a simple structure of the proposed con-
troller compare to the SMC-Fuzzy controller. Be-
sides, the root mean square error (RMSE) for PID,
SMC-Fuzzy and the proposed adaptive fuzzy con-
troller in all cases are tabulated in Table 1, where
RMSEs of the fuzzy controller are less than the PID
controller, and very close to the SMC-Fuzzy con-
troller.

Figure 6. Identification of FW MAVs rotational
velocity (ωby,ωbz)

Figure 7. Altitude tracking performance of NIFW
MAV controllers for a constant height trajectory

Figure 8. Altitude tracking performance of NIFW
MAV controllers for a sinusoidal trajectory

Figure 9. Altitude tracking performance of NIFW
MAV controllers for a square wave trajectory

Figure 10. Altitude tracking performance of
NIFW MAV controllers for a step wave trajectory
changing amplitude from 0 m to 10 m after 20 sec.

Figure 11. Altitude tracking performance of FW
MAV controllers for a step wave trajectory

changing amplitude from -5 m to 5 m after 20 sec.
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The adaptive T-S fuzzy controller’s perfor-
mance is evaluated with respect to various refer-
ence signals and the performance is compared with
a PID controller, and SMC theory based fuzzy con-
troller developed in [36]. In this work, the con-
sidered trajectories for tracking altitude are as fol-
lows: 1) constant height of 10 m; 2) sinusoidal
wave function with an amplitude of 1 m and fre-
quency of 1 Hz; 3) square wave function with an
amplitude of 1 m and frequency of 0.1 Hz; and
4) different step functions. In all the figures, the
proposed controller is named as ”FCM-TS-Fuzzy”,
whereas the benchmarked controllers are named
as ”SMC-Fuzzy”, and ”PID”. At first, tracking
performance of the controllers are observed for a
trajectory of constant height. The results are ob-

served in Figure 12, from where it is observed that
the proposed controller performs better than the
PID controller. The performance is also compa-
rable with SMC-Fuzzy controller. Besides, com-
paratively higher overshoot is observed from the
PID controller at the transient state. After that, the
performance is witnessed for a sinusoidal reference
signal, where an improved performance is observed
from the FCM-TS-Fuzzy controller as exposed in
Figure 13. A square wave pulse signal is also in-
serted into the closed loop system to observe the
efficacy of the proposed adaptive fuzzy controller.
Our proposed controller outperforms the PID and
SMC-Fuzzy controller as shown in Figure 14. Fi-
nally, three different types of step functions such as
Zbd (t) = 10u(t − 20), Zbd (t) = 5u(t) + 5u(t − 20),
Zbd (t) =−5u(t)+10u(t−20) are used as reference
signal to check the proposed controller’s perfor-
mance. Here u(t) is a unit step function. Satisfac-
tory and better performance than the PID controller
is recorded in all cases as shown in Figure 15,
Figure 16, and Figure 17. The SMC-Fuzzy con-
troller performs slightly better than the proposed
controller. However, the results are comparable
with a simple structure of the proposed controller
compare to the SMC-Fuzzy controller. Besides,
the root mean square error (RMSE) for PID, SMC-
Fuzzy and the proposed adaptive fuzzy controller
in all cases are tabulated in Table ??, where RMSEs
of the fuzzy controller are less than the PID con-
troller, and very close to the SMC-Fuzzy controller.
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Figure 6: Identification of FW MAVs rotational ve-
locity (ωby,ωbz)

Figure 7: Altitude tracking performance of NIFW
MAV controllers for a constant height trajectory

Figure 8: Altitude tracking performance of NIFW
MAV controllers for a sinusoidal trajectory

Figure 9: Altitude tracking performance of NIFW
MAV controllers for a square wave trajectory

Figure 10: Altitude tracking performance of NIFW
MAV controllers for a step wave trajectory chang-
ing amplitude from 0 m to 10 m after 20 sec.

Figure 11: Altitude tracking performance of FW
MAV controllers for a step wave trajectory chang-
ing amplitude from -5 m to 5 m after 20 sec.

Figure 12: Altitude tracking performance of NIFW
MAV controllers for a step wave trajectory chang-
ing amplitude from 5 m to 10 m after 20 sec.
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in Figure 10, Figure 11, and Figure 12. The SMC-
Fuzzy controller performs slightly better than the
proposed controller. However, the results are com-
parable with a simple structure of the proposed con-
troller compare to the SMC-Fuzzy controller. Be-
sides, the root mean square error (RMSE) for PID,
SMC-Fuzzy and the proposed adaptive fuzzy con-
troller in all cases are tabulated in Table 1, where
RMSEs of the fuzzy controller are less than the PID
controller, and very close to the SMC-Fuzzy con-
troller.

Figure 6. Identification of FW MAVs rotational
velocity (ωby,ωbz)

Figure 7. Altitude tracking performance of NIFW
MAV controllers for a constant height trajectory

Figure 8. Altitude tracking performance of NIFW
MAV controllers for a sinusoidal trajectory

Figure 9. Altitude tracking performance of NIFW
MAV controllers for a square wave trajectory

Figure 10. Altitude tracking performance of
NIFW MAV controllers for a step wave trajectory
changing amplitude from 0 m to 10 m after 20 sec.

Figure 11. Altitude tracking performance of FW
MAV controllers for a step wave trajectory

changing amplitude from -5 m to 5 m after 20 sec.
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Figure 12. Altitude tracking performance of
NIFW MAV controllers for a step wave trajectory
changing amplitude from 5 m to 10 m after 20 sec.

Table 2. Controllers performance (Measured
RMSE)

Reference
Signal

RMSE
FCM-

TS-
Fuzzy

SMC-
Fuzzy

PID

Constant
height

0.5693 0.5876 0.6630

Sinusoidal 0.0737 0.0790 0.2096
Square wave 0.2039 0.2098 0.2493
Step 1 0.4023 0.3856 0.4000
Step 2 0.6266 0.5678 0.6701
Step 3 0.6888 0.6695 0.7188

4 Conclusion

Acquiring an exact numerical model and the
control of a highly nonlinear over-actuated com-
plex system like NIFW MAV is difficult. Besides,
the uncertainties are hard or sometimes impossible
to incorporate in such a model. Propelled by vari-
ous points of interest of model-free techniques us-
ing neural networks, and fuzzy logic systems, in
this work an FCM clustering based nonlinear fuzzy
MIMO NIFW MAV model is developed, where the
datasets are recorded from a built-up NIFW MAV
flight simulator. Moreover, an adaptive fuzzy con-
troller is developed and employed to control the
MAVs altitude. In the developed controller, the
FCM clustering is used to tune the antecedent pa-
rameters, whereas the PD theory is utilized to adapt
the consequent parameters. To evaluate the con-
troller’s performance, it is contrasted with a PID
controller with respect to constant height, sinu-
soidal wave, square wave, and three different step
functions. In all cases, our developed adaptive

fuzzy controller outperforms the PID controller. In
compare to the SMC-Fuzzy controller, the archi-
tecture of the proposed fuzzy controller is much
simpler. However, a comparable performance is
witnessed from the proposed controller. The pro-
posed fuzzy controller helps the MAV to follow var-
ious desired trajectories with RMSE of only 0.5693,
0.0737, 0.2039, 0.4023, 0.6266 and 0.7188. In
future, our adaptive fuzzy controller will be ad-
vanced to an evolving controller by utilizing learn-
ing machine algorithms and will be implemented in
a NIFW MAV hardware.
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