PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of heat input in dissimilar friction stir welding of A390-10 wt.% SiC composite–AA2024 aluminum alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the impact of heat input, generated during friction stir welding, on the microstructure, mechanical properties, and corrosion resistance of dissimilar joints between A390-10 wt.% SiC composite and AA2024-T6 aluminum alloy. Welds were created using two rotational speeds: 600 rpm and 1600 rpm, while maintaining a constant traverse speed of 60 mm/min and employing a triangular pin tool. The results reveal that increasing the heat input from 125 to 354 J/mm leads to enhanced mixing in the stir zone, resulting in the formation of a layered structure. The stir zone area increases by 23% with the rise in heat input from 125 to 354 J/mm. Moreover, as the heat input and plastic strain in the stir zone increase, the particle size decreases by 31%, and their distribution becomes more uniform. Furthermore, an increase in heat input leads to the formation of coarser precipitates and particles on both the advancing and retreating sides, regardless of the type of precipitates formed. Conversely, reducing the heat input from 354 to 125 J/mm results in achieving maximum hardness (165.3 ± 2.3 HV0.1), yield strength (410.3 ± 11.3 MPa), ultimate tensile strength (514.5 ± 10.4 MPa), and minimum corrosion rate (0.41 mm/year).
Rocznik
Strony
art. no. e172, 2024
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
  • Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran
Bibliografia
  • 1. Akinlabi ET, Mahamood RM, Akinlabi ET, Mahamood RM. Introduction to friction welding, friction stir welding and frictionstir processing. In: Solid-state welding: friction and friction stir welding processes, pp. 1–12 (2020).
  • 2. Kumar Rajak D, Pagar DD, Menezes PL, Eyvazian A. Friction-based welding processes: friction welding and friction stir welding. J Adhes Sci Technol. 2020;34:2613–37.
  • 3. El-Sayed MM, Shash A, Abd-Rabou M, El Sherbiny MG. Welding and processing of metallic materials by using friction stir technique: a review. J Adv Join Process. 2021;3: 100059.
  • 4. Wang Y, Liu Y, Zheng J-H, Lan B, Jiang J. Develop a new strain rate sensitive solid-state pressure bonding model. Mater Des. 2022;215: 110436.
  • 5. Paidar M, Kazemi A, Mehrez S, Oladimeji Ojo O, Matyuso Nasution MK, Mironov SN. Investigation of modified friction stirclinching-brazing process of AA2024 Al/AZ31 Mg: metallurgical and mechanical properties. Arch Civ Mech Eng. 2021;21:115.
  • 6. Satyanarayana MVNV, Kumar A, Jain VKS, Kumar R, Mishra S. Microstructure, mechanical properties and corrosion behavior of friction stir processed AA2014 alloy. Arch Civ Mech Eng. 2022;23:43.
  • 7. Khalaf HI, Al-Sabur R, Derazkola HA. Effect of number of tools houlders on the quality of steel to magnesium alloy dissimilar friction stir welds. Arch Civ Mech Eng. 2023;23:125.
  • 8. Anand R, Sridhar V. Studies on process parameters and tool geometry selecting aspects of friction stir welding—a review. Mater Today Proc. 2020;27:576–83.
  • 9. Colegrove PA, Shercliff HR, Zettler R. Model for predicting heat generation and temperature in friction stir welding from the material properties. Sci Technol Weld Join. 2007;12:284–97.
  • 10 Choudhary AK, Jain R. Fundamentals of friction stir welding, its application, and advancements. In: Welding Technology. Berlin: Springer; 2021. p. 41–90.
  • 11. Liu X, Sun Z. Numerical simulation of vortex-friction stir welding based on internal friction between identical materials. Int J Heat Mass Transf. 2022;185: 122418.
  • 12. Kar A. Mechanism of microstructure evolution and improved mechanical properties in two-pass friction stir welding of titanium to aluminum. Arch Civ Mech Eng. 2023;23:231.
  • 13. Ambrosio D, Wagner V, Vivas J, Dessein G, Aldanondo E, Cahuc O. Advances in friction stir welding of Ti6Al4V alloy complex geometries: T-butt joint with complete penetration. Arch Civ Mech Eng. 2023;23:182.
  • 14. Su H, Wu C-S. Numerical simulation for the comparison of thermal and plastic material flow behavior between symmetrical and asymmetrical boundary conditions during friction stir welding. Adv Manuf. 2023;11:143–57.
  • 15. Geng P, Ma Y, Ma N, Ma H, Aoki Y, Liu H, Fujii H, Chen C. Effects of rotation tool-induced heat and material flow behaviour on friction stir lapped Al/steel joint formation and resultant microstructure. Int J Mach Tools Manuf. 2022;174: 103858.
  • 16. Sen M, Chattopadhyaya S. Investigations into FSW joints of dissimilar aluminum alloys. Mater Today Proc. 2020;27:2455–62.
  • 17. Patel V, Li W, Wang G, Wang F, Vairis A, Niu P. Friction stir welding of dissimilar aluminum alloy combinations: state-of-the-art. Metals. 2019;9:270.
  • 18. Ghosh M, Husain MM, Kumar K, Kailas S. Friction stir-welded dissimilar aluminum alloys: microstructure, mechanical properties, and physical state. J Mater Eng Perform. 2013;22:3890–901.
  • 19. Kalinenko A, Zuiko I, Malopheyev S, Mironov S, Kaibyshev R. Dissimilar friction-stir welding of aluminum alloys 2519, 6061,and 7050 using an additively-manufactured tool. Eng Fail Anal. 2024;156: 107851.
  • 20. Subrahmanian K, Ramachandran K, Rajeev V, Renjith V. Friction stir welding of dissimilar AA7050 and AA5083 aluminium alloys: Microstructural and mechanical characterization. Proc Inst Mech Eng Part E J Process Mech Eng. 2023;2023:09544089231213086.
  • 21. Sankar BR, Umamaheswarrao P, Babu KR, Pardhasaradhi M. Multi objective optimization of joining dissimilar AA5083&AA6061 alloys using friction stir welding-integrated Taguchi andgrey systems approach. Mater Sci Forum. 2020;978:133–9.
  • 22. Devaiah D, Kishore K, Laxminarayana P. Optimal FSW process parameters for dissimilar aluminium alloys (AA5083and AA6061) using Taguchi technique. Mater Today Proc. 2018;5:4607–14.
  • 23. Mohamadigangaraj J, Nourouzi S, Aval HJ. Microstructure, mechanical and tribological properties of A390/SiC composite produced by compocasting. Trans Nonferr Met Soc China. 2019;29:710–21.
  • 24. Mishra RS, Ma Z. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50:1–78.
  • 25. Arbegast W, Hartley P. In: Proceedings of the fifth international conference on trends in welding research, Pine Mountain (1998).
  • 26. Ahmed MM, Ataya S, El-Sayed Seleman MM, Mahdy AM, Alsaleh NA, Ahmed E. Heat input and mechanical properties investigation of friction stir welded aa5083/aa5754 and aa5083/aa7020. Metals. 2020;11:68.
  • 27. Yu P, Wu C, Shi L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. Acta Mater. 2021;207: 116692.
  • 28. Rollett A, Rohrer GS, Humphreys J. Recrystallization and related annealing phenomena. Newnes (2017).
  • 29. Raabe D. Recovery and recrystallization: phenomena, physics, models, simulation. In: Physical metallurgy, pp. 2291–2397(2014).
  • 30. Chang C, Lee C, Huang J. Relationship between grain size and Zener–Holloman parameter during friction stir processing inAZ31 Mg alloys. Scr Mater. 2004;51:509–14.
  • 31. Zhang Z, Zhang H. Numerical studies on the effect of transverse speed in friction stir welding. Mater Des. 2009;30:900–7.
  • 32. Hu Z, Wang X, Yuan S. Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy. Mater Charact. 2012;73:114–23.
  • 33. Yourdkhani M, Hubert P. Quantitative dispersion analysis of inclusions in polymer composites. ACS Appl Mater Interfaces. 2013;5:35–41.
  • 34. Abdollah-Zadeh A, Saeid T, Sazgari B. Microstructural and mechanical properties of friction stir welded aluminum/copperlap joints. J Alloy Compd. 2008;460:535–8.
  • 35. Nosrati HG, Yazdani NM, Khoran M. Double-sided friction stir welding of AA 2024–T6 joints: mathematical modeling and optimization. CIRP J Manuf Sci Technol. 2022;36:1–11.
  • 36. Ahmed MMZ, Jouini N, Alzahrani B, Seleman MME-S, Jhaheen M. Dissimilar friction stir welding of AA2024 and AISI 1018:microstructure and mechanical properties. Metals. 2021;11:330.
  • 37. Maji P, Ghosh SK, Nath RK, Karmakar R. Microstructural, mechanical and wear characteristics of aluminum matrix composites fabricated by friction stir processing. J Braz Soc Mech Sci Eng. 2020;42:1–24.
  • 38. Dong B-X, Li Q, Wang Z-F, Liu T-S, Yang H-Y, Shu S-L, ChenL-Y, Qiu F, Jiang Q-C, Zhang L-C. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunablein-situ TiB2 particles with specific spatial distribution. ComposB Eng. 2021;217: 108912.
  • 39. Matvienko O, Daneyko O, Kovalevskaya T, Khrustalyov A, Zhukov I, Vorozhtsov A. Investigation of stresses induced due to the mismatch of the coefficients of thermal expansion of the matrixa nd the strengthening particle in aluminum-based composites. Metals. 2021;11:279.
  • 40. Balokhonov R, Kulkov A, Zemlyanov A, Romanova V, Evtushenko E, Gatiyatullina D, Kulkov S. Evolution of residual stresses and fracture in thermomechanically loaded particle-reinforced metal matrix composites. Phys Mesomech. 2021;24:503–12.
  • 41. Li Z, Li Z, Tan Z, Xiong D-B, Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int J Plast. 2020;127: 102640.
  • 42. Paz Martínez-Viademonte M, Abrahami ST, Hack T, Burchardt M, Terryn H. A review on anodizing of aerospace aluminum alloys for corrosion protection. Coatings. 2020;10:1106.
  • 43. Xu W, Liu J. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate. Corros Sci.2009;51:2743–51.
  • 44. Ezuber H, El-Houd A, El-Shawesh F. A study on the corrosion behavior of aluminum alloys in seawater. Mater Des. 2008;29:801–5.
  • 45. Aballe A, Bethencourt M, Botana F, Cano M, Marcos M. Influence of the cathodic intermetallics distribution on the reproduc-ibility of the electrochemical measurements on AA5083 alloy inNaCl solutions. Corros Sci. 2003;45:161–80.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34b58801-4dca-40d0-abef-7aabeabd0335
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.