PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural gas hydrates in flow assurance

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Hydraty gazu ziemnego w zapewnieniu przepływu
Języki publikacji
EN
Abstrakty
EN
This work focuses on hydrate formation in natural gas pipelines, which is considered as the principal flow assurance problem. A hydrate phase equilibrium model is combined with a transient gas flow model to monitor if, where, and when natural gas in pipelines enters the hydrate formation region. The hydrate model is based on phase equilibria in systems with natural gas containing free and dissolved water. A transient gas flow model is used to describe the flow conditions in natural gas pipelines. This approach enables pipeline operators to monitor the risk of hydrates under normal and emergency conditions, but also to estimate the optimal trade-off between different hydrate prevention techniques. To show the applicability of the method a case study is conducted for a subsea pipeline.
PL
......
Rocznik
Tom
Strony
7--11
Opis fizyczny
Bibliogr. 23 poz., rys., tab.,
Twórcy
  • Department of Heating and Gas Systems, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw
Bibliografia
  • [1] E. D. Sloan Jr, 2003. "Fundamental principles and applications of natural gas hydrates", Nature, 426, 6964, 353-363.
  • [2] J. P. Kennett, K. G. Cannariato, I. L. Hendy, and R. J. Behl. 2002. "Methane hydrates in Quaternary climate change: The clathrate gun hypothesis", Washington, DC: Am Geophys Union.
  • [3] I. Chatti, A. Delahaye, L. Foumaison, and J.-P. Petitet. 2005. "Benefits and drawbacks of clathrate hydrates: a review of their areas of interest", Energy Conyers. Manage., 46, 9, 1333-1343
  • [4] S. Thomas and R. A. Dawe. 2003. "Review of ways to transport natural gas energy from countries which do not need the gas for domestic use", 28, 14, 1461-1477.
  • [5] J. S. Gudmundsson and A. Burrehaug. 1996. "Frozen hydrate for transport of nature gas", in 2nd International Conference on Nature Gas Hydrate, Toulouse, France.
  • [6] K. A. Kvenvolden. 1999. "Potential effects of gas hydrate on human welfare", PNAS, 96, 7, 3420-3426.
  • [7] A. V. Milkov. 2004. "Global estimates of hydrate-bound gas in marine sediments: how much is really out there?" Earth-Sci. Rev., 66, 3, 183-197.
  • [8] R. Boswell and T. S. Collett. 2011. "Current perspectives on gas hydrate resources", Energy Environ. Sci., 4, 4, 1206-1215.
  • [9] Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, and X.-S. Li 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges", Appl. Energy, 162, 1633-1652.
  • [10] "Why are gas hydrates important? - centre for gas hydrate research." [Online]. Available: https://hydrate.site.hw.ac.uk/why-are-gas-hydrates-important/. [Acces-sed: 04-May-2022].
  • [11] E. Dendy Sloan and Jr. 1998. Clathrate Hydrates of Natural Gases, Second Edition, Revised and Expanded. CRC Press.
  • [12] S. Zhai, C. Chauvet, R. Azarinezhad, and J. Zeng. 2015. "Discussion of pipeline leakage and hydrate formation risks associated in deepwater natural gas pipelines", 17th International Conference on Multiphase Production Technology, Cannes, France.
  • [13] J. D. Sundramoorthy, M. J. Leknes, and K. Moodley. 2018 "Unconventional Gas Dehydration System Failure Resulting in a Gas Hydrate Blockage", Offshore Technology Conference, Asia, Kuala Lumpur, Malaysia.
  • [14] C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu, "Fundamentals and applications of gas hydrates", Annir. Rev. Chem. Biomol. Eng., vol. 2, pp. 237-257, 2011.
  • [15] J. H. van der Waals, J. H. van der Waals, and J. C. Platteeuw, "Clathrate Solutions", Advances in Chemical Physics. pp. 1-57, 1959.
  • [16] V. McKoy and 0. Sinanoğlu. 1963. "Theory of dissociation pressures of some gas hydrates", J. Chem. Phvs., 38, 12, 2946-2956.
  • [17] A. Fredenslund, R. L. Jones, and J. M. Prausnitz. 1975 "Group-contribution estimation of activity coefficients in nonideal liquid mixtures", AlChE J., 21, 6, 1086-1099.
  • [18] I. R. Krichevsky and J. S. Kasarnovsky. 1935. "Thermodynamical Calculations of Solubilities of Nitrogen and Hydrogen in Water at High Pressures", J. Am. Chem. Soc., 57, 11, 2168-2171.
  • [19] T. Holderbaum and J. Gmehling. 1991. "PSRK: A group contribution equation of state based on UNIFAC", Fluid Phase Equilib., 70, 2-3, 251-265.
  • [20] F. E. Uilhoorn. 2017. "Comparison of Bayesian estimation methods for modeling flow transients in gas pipelines", Journal of Natural Gas Science and Engineering, 38, 159-170.
  • [21] https://www.baltic-pipe.eu/. [Accessed: 06-May-2022].
  • [22] N. Sunday, A. Settar, K. Chetehouna, and N. Gascoin 2021. "An overview of flow assurance heat management systems in subsea flowlines", Energies, 14, 2, 458.
  • [23] J. Carroll. 2014. "Dehydration of Natural Gas." Natural Gas Hydrates. 175-195.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34b20cd8-f5ca-462c-be74-a43f5c513eac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.