Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Badania porównawcze metod optymalizacji rozmieszczenia kogeneracji rozproszonej w sieci dystrybucji energii elektrycznej
Języki publikacji
Abstrakty
With the advent of restructuring in power system and the exponential growth in the load demand, the importance of Distribution Generation (DG) has been increased. The DG is used to reduce the power losses and also to improve the system stability. The non-optimum DG placement and sizing could result in increase power losses and instability of the power system. This paper presents the comparative study for DG allocation techniques based on three different indicators namely Active power VSI (P-VSI), Reactive power VSI (Q-VSI) and Power Losses Reduction (PLR) indicator. The performances of these indicators are also compared for optimal DG output, maximum loss reduction, improvement in voltage profile and improvement in voltage stability. Standard 12-bus and 33-bus radial distribution networks are used as a test system. From the analysis and results, it is found that PLR performance is better than P-VSI and Q-VSI indicators in DG allocation.
W artykule przedstawiono analizę porównawczą technik alokacji kogeneracji rozproszonej, opartych na trzech wskaźnikach: mocy czynnej falownika, mocy biernej falownika oraz redukcji strat mocy. W warunkach optymalnej pracy dokonano porównania maksymalnej możliwej redukcji strat, jakości profilu napięcia oraz stabilności napięcia wybranych metod. W testach systemów uwzględniono standardową 12 i 33-liniową sieć dystrybucji energii. Przedstawiono wnioski końcowe analizy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
199--205
Opis fizyczny
Bibliogr. 21 poz., schem., tab., wykr.
Twórcy
autor
- Universiti Teknologi Malaysia
autor
- University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
- Universiti Teknologi Malaysia.
autor
- University of Malaya.
autor
- University of Malaya
autor
- University of Malaya
Bibliografia
- [1] "BP Global Statistical Review of World Energy 2011."
- [2] M. Begovic, et al., "Summary of "System protection and voltage stability"," IEEE Transactions on Power Delivery, 10 (1995), nr 2, 631-638.
- [3] M. Khederzadeh and A. Ghorbani, "STATCOM modeling impacts on performance evaluation of distance protection of transmission lines," European Transactions on Electrical Power, 21 (2011), nr 8, 2063-2079.
- [4] G. Chicco and P. Mancarella, "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, 13 (2009), nr 3, 535-551.
- [5] T. Ackermann, et al., "Distributed generation: a definition," Electric Power Systems Research, 57 (2001), nr 3,195-204.
- [6] S. M. Moghaddas-Tafreshi and E. Mashhour, "Distributed generation modeling for power flow studies and a three-phase unbalanced power flow solution for radial distribution systems considering distributed generation," Electric Power Systems Research, 79 (2009), nr 4, 680-686.
- [7] W. Ouyang, et al., "Distribution network planning method considering distributed generation for peak cutting," Energy Conversion and Management, 51 (2010), nr 12, 2394-2401.
- [8] P. Kundur, et al., "Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions," IEEE Transactions on Power Systems, 19 (2004), nr 3, 1387-1401.
- [9] P. Crossley, et al., "System protection schemes in power networks: existing installations and ideas for future development," Seventh International Conference on Developments in Power System Protection, (2001), 450-453.
- [10] G. Cau, et al., "Energy and cost analysis of small-size integrated coal gasification and syngas storage power plants," Energy Conversion and Management, 56 (2012), 121-129.
- [11] ENA, "Energy Networks Association (UK). Available at: http://2010.energynetworks.org/distributed-generation [accessed on 10-08-2011]." 2010.
- [12] S. Larsson and A. Danell, "The black-out in southern Sweden and eastern Denmark, September 23, 2003," IEEE PES Conference and Exposition in Power Systems, (2006), 309-313.
- [13] M. Ismail and T. K. Rahman, "Estimation of maximum loadability in power systems by using fast voltage stability index (FVSI)," Journal of Power and Engineering Systems, 25 (2005), 181-189.
- [14] S. Biswas, et al., "Optimum distributed generation placement with voltage sag effect minimization," Energy Conversion and Management, 53 (2012), nr 1,163-174.
- [15] F. Capitanescu, et al., "Optimal power flow computations with constraints limiting the number of control actions," IEEE Bucharest in PowerTech, (2009), 1-8.
- [16] B. M. Alshammari, et al., "Power system performance quality indices," European Transactions on Electrical Power, 21 (2011), nr 5, 1704-1710.
- [17] R. H. Salim, et al., "Impact of power factor regulation on smallsignal stability of power distribution systems with distributed synchronous generators," European Transactions on Electrical Power, 21 (2011), nr 7, 1923-1940.
- [18] N. G. A. Hemdan and M. Kurrat, "Distributed generation location and capacity effect on voltage stability of distribution networks," Annual IEEE Conference in Student Paper, (2008), 1-5.
- [19] J.J. Jamian, et al., "Combined Voltage Stability Index for Charging Station Effect on Distribution Network”, International Review of Electrical Engineering-IREE, 6 (2011), nr 7, 3175-3184.
- [20] J. J. Jamian, et al., "Comparative Study on Distributed Generator Sizing Using Three Types of Particle Swarm Optimization," Third International Conference on Intelligent Systems, Modelling and Simulation, (2012), 131-136.
- [21] M. M. Aman, et al., "Optimal placement and sizing of a DG based on a new power stability index and line losses,"International Journal of Electrical Power & Energy Systems, 43 (2012), nr 1, 1296-1304
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34af328e-1bd5-4836-9fb2-a7441cb2c0cc