PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

p-adic Banach space operators and adelic Banach space operators

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study non-Archimedean Banach *-algebras Mp over the p-adic number fields Qp, and MQ over the adele ring AQ. We call elements of Mp, p-adic operators, for all primes p, respectively, call those of MQ, adelic operators. We characterize MQ in terms of Mp’s. Based on such a structure theorem of MQ, we introduce some interesting p-adic operators and adelic operators
Rocznik
Strony
29--65
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • St. Ambrose University Department of Mathematics 421 Ambrose Hall, 518 W. Locust St. Davenport, IA 52803, USA
Bibliografia
  • [1] I. Cho, Operators induced by prime numbers, Methods Appl. Anal. 19 (2013) 4, 313–340.
  • [2] I. Cho, Von Neumann algebras generated by the adele ring, (2012) (submitted).
  • [3] I. Cho, Non-Archimedean matricial algebras induced by adelic structures, (2012) (submitted).
  • [4] I. Cho, Free probability on arithmetic functions determined by primes, (2013) (submitted).
  • [5] I. Cho, Classification on arithmetic functions and corresponding free-moment L-functions, Bulletin Korean Math. Soc. (2013) (to appear).
  • [6] I. Cho, T. Gillespie, On the von Neumann algebra generated by the adele ring, (2013) (submitted).
  • [7] I. Cho, P.E.T. Jorgensen, Krein-space operators induced by Dirichlet characters, Special Issues, Contemp. Math. American Math. Soc., (2013) (to appear).
  • [8] I. Cho, P.E.T. Jorgensen, Krein-space representations of arithmetic functions determined by primes, (2013) (submitted).
  • [9] T. Gillespie, Superposition of zeroes of automorphic L-functions and functoriality, PhD Thesis, Univ. of Iowa, (2010).
  • [10] T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math. 54 (2011) 1, 35–46.
  • [11] F. Radulescu, Random matrices, amalgamated free products and subfactors of the C_-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347–389.
  • [12] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998) 627.
  • [13] D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, CRM Monograph Series, 1 (1992).
  • [14] V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-adic Analysis and Mathematical Physics, Ser. Soviet & East European Math. 1, World Scientific, 1994.
  • [15] D. Bump, Automorphic Forms and Representations, Cambridge Studies in Adv. Math. 55, Cambridge Univ. Press, 1996.
  • [16] P.R. Halmos, A Hilbert Space Problem Book (2nd ed.), Grad. Text in Math. 19, Springer-Verlag, 1982.
  • [17] A. Kochubei, Non-Archimedean normal operators, J. Math. Phys. 51 (2010).
  • [18] A. Kochubei, Non-Archimedean shift operators, ArXiv 1006.0077, (2010) (preprint).
  • [19] A. Kochubei, Non-Archimedean unitary operators, ArXiv 1102.4302, (2011) (preprint).
  • [20] A. Kochubei, On some classes of Non-Archimedean algebras, ArXiv 1206.2751, (2012) (preprint).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34acdfa1-e2b5-45f1-ad66-0b4c8458fc27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.