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Abstract. In this paper, we study non-Archimedean Banach ∗-algebras Mp over the p-adic
number fields Qp, and MQ over the adele ring AQ. We call elements of Mp, p-adic operators,
for all primes p, respectively, call those of MQ, adelic operators. We characterize MQ in
terms of Mp’s. Based on such a structure theorem of MQ, we introduce some interesting
p-adic operators and adelic operators.
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1. INTRODUCTION

In this paper, we define Banach spaces Xp over p-adic number fields (or p-prime
fields) Qp, and the Banach space XQ over the adele ring AQ, and study Banach-space
operators acting on Xp, and those acting on XQ, respectively. We call Xp and XQ,
the p-prime Banach spaces (over fields Qp) and the adele-ring Banach space (over
a ring AQ), respectively (see Section 3 below).

Matrices acting on Qnp and on AnQ are considered in [3], and the structures of corre-
sponding matricial algebras have been characterized. Remark here that the matrices
are over Qp, respectively over AQ.

In this paper, we study the case where n =∞, under certain norm topologies. We
define Banach spaces Xp and XQ, consisting of sequences in Qp, respectively, in AQ,
and study Banach-space operators of B(Xp) (over Qp), called p-adic operators, and
those of B(XQ) (over AQ), called adelic operators.

The main purpose of this paper is to study fundamental operator-theoretic prop-
erties of certain p-adic and adelic operators in terms of well-known number-theoretic
results.
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In [3], we consider the relation between the matricial algebra Mn = Mn(AQ), and
the matricial algebras Mp:n = Mn(Qp), motivated by [4] and [6]. We provide a way to
study AQ-matrices of Mn in terms of its equivalent forms determined by Qp-matrices
of Mp:n. In particular, Mn is a Banach ∗-algebra, which is isomorphic to the weak
tensor product (in the sense of Section 2.2 below) of Mp:n’s, for all p ∈ P, i.e.,

Mn
∗-iso
= ⊗Θ

p∈P
Mn:p,

induced by a system Θ = {Θp}p∈P of certain morphisms

Θp : Mn:p →Mn:p for all p ∈ P,

where
P def

= {∞} ∪ {all primes}.

In [5], we compute spectra of Qp-matrices of Mp:n, and those of AQ-matrices of
Mn. In particular, we showed that the AQ-spectrum of an AQ-matrix A is computed
by the Qp-spectra of Qp-matrices Ap, since

A =
[
(xp:ij)p∈P

]
n×n

=⇒ A
equivalent

= ⊗
p∈P

Ap,

where
Ap = [(xp:ij)]n×n for all p ∈ P.

One may have a similar structure theorem for our case where n = ∞, under
suitable topologies.

Analysis on p-adic number fields Qp and that on the adele ring AQ is not only
interesting, but also important in various mathematical fields and other scientific
areas. In particular, p-adic analysis have been used for studying (non-Archimedean)
structures with “small” distance (e.g., [1, 3, 4, 14] and [6]). adelic analysis on AQ is
dictated by p-adic analysis by the very definition-and-construction of AQ. Recall that
the adele ring AQ is a weak direct product of prime fields {Qp}p∈P , i.e., in our sense (of
Section 2.2), it is the weak tensor product Πg

p∈P
Qp induced by the system g = {gp}p∈P

of the surjective functions gp from Qp onto its unit disks Zp, traditionally denoted by

AQ = Π′
p∈P

Q,

i.e., analysis on Qp and AQ provides new paradigms and tools for studying
non-Archimedean geometry of structures with small distances (e.g., [14]).

Mainly, the prime fields Qp and the adele ring AQ are playing key roles in modern
number theory, connected with analytic number theory and algebraic geometry (e.g.,
[6, 9, 10] and [15]). Recently, the author and Gillespie have shown that they are
also closely related to operator algebraic structures via free probability (e.g., see [1]
through [6]).
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After submission, the author realized that there is a series of recent research of
Kochubei, considering non-Archimedean operator theory (see [17–19] and [20]). In
those papers, Kochubei study certain operators on non-Archimedean normed spaces,
and define non-Archimedean version of normality, unitarity and shifting of operators.

Different from Kochubei’s universal approach, here, we consider operators on
non-Archimedean normed spaces as forms of infinite matrices, based on the author’s
recent interests; connecting number theory with operator theory; concentrated on
p-adic analysis, adelic analysis (e.g., [1–3] and [6]), and free probability on arithmetic
functions (e.g., [4,5,7] and [8]), purely motivated by modern number theory. In partic-
ular, the non-Archimedean normed spaces {Xp}p:primes and XQ in this paper are con-
structed directly from p-adic number fields {Qp}p:primes, respectively, the adele ring
AQ. The fundamental reason to handle such specific non-Archimedean normed spaces;
{Xp}p:primes, XQ; is to connect modern number-theoretic objects-and-results to oper-
ator theory via possible operator-algebraic tools, including representation theory and
free probability, and vice versa.

In this paper, we focus on establishing backgrounds of such a study. One may/can
apply these backgrounds to more deeper and developed researches to connect number
theory and operator theory.

2. DEFINITIONS AND BACKGROUNDS

In this section, we introduce basic definitions and backgrounds of our study.

2.1. THE ADELE RING AQ

Fundamental theorem of arithmetic says that every positive integer in the integer Z
except 1 can be expressed as a usual multiplication of primes (or prime numbers),
equivalently, all positive integers which are not 1 are prime-factorized under multipli-
cation. And hence, all negative integers n, except −1, can be understood as products
of −1 and prime-factorizations of |n|. Thus, primes are playing key roles in both
classical and advanced number theory.

The adele ring AQ is one of the main topics in advanced number theory connected
with other mathematical fields like algebraic geometry and L-function theory, etc.
Throughout this paper, we denote the set of all natural numbers (which are positive
integers) by N, and the set of all rational numbers by Q.

Let us fix a prime p. Define the p-norm | · |p on Q by

|q|p =
∣∣∣pr a

b

∣∣∣
p

def
=

1

pr
,

whenever q = pr ab ∈ Q× = Q \ {0}, for some r ∈ Z, with an additional identity:

|0|p
def
= 0 (for all primes p).
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For example, ∣∣∣∣−24

5

∣∣∣∣
2

=

∣∣∣∣23 ·
(
− 3

5

)∣∣∣∣
2

=
1

23
=

1

8

and ∣∣∣∣ 1

24

∣∣∣∣
2

=
∣∣2−3 · 3−1

∣∣ =
1

2−3
= 8.

It is easy to check that:

(i) |q|p ≥ 0 for all q ∈ Q,
(ii) |q1q2|p = |q1|p · |q2|p for all q1, q2 ∈ Q,
(iii) |q1 + q2|p ≤ max{|q1|p , |q2|p} for all q1, q2 ∈ Q.

In particular, by (iii), we verify that

(iii)’ |q1 + q2|p ≤ |q1|p + |q2|p for all q1, q2 ∈ Q.

Thus, by (i), (ii) and (iii)’ the p-norm | · |p is indeed a norm. However, by (iii), this
norm is “non-Archimedean”. Thus, the pair (Q, | · |p) forms a normed space, for each
prime p.

Definition 2.1. We define sets Qp by the p-norm-closures of the normed spaces
(Q, | · |p), for all primes p. We call it the p-prime field (or the p-adic number field).

For a fixed prime p, all elements of the p-prime field Qp are formed by

pr

( ∞∑
k=0

akp
k

)
for 0 ≤ ak < p, (2.1)

for all r ∈ Z, where ak ∈ N0
def
= N ∪ {0}. For example,

−1 = (p− 1)p0 + (p− 1)p+ (p− 1)p2 + . . . .

The subset Zp of Qp is the set consisting of all elements formed by

∞∑
k=0

akp
k for 0 ≤ ak < p in N0.

So, by definition, for any x ∈ Qp, there exist r ∈ Z, and x0 ∈ Zp, such that

x = prx0.

Notice that if x ∈ Zp, then |x|p ≤ 1, and vice versa, i.e.,

Zp = {x ∈ Qp : |x|p ≤ 1}. (2.2)

The subset Zp of (2.2) is said to be the unit disk of Qp, for all primes p. Remark
that

Zp ⊃ pZp ⊃ p2Zp ⊃ p3Zp ⊃ . . . ,
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since if x ∈ pk Zp, then |x|p ≤ 1
pk

for all k ∈ N, where aY means {ay : y ∈ Y } for all
a ∈ Qp, and for all subsets Y of Qp. Similarly, one can verify that

Zp ⊂ p−1Zp ⊂ p−2Zp ⊂ p−3Zp ⊂ . . . ,

and hence

Qp =

∞⋃
k=−∞

pkZp, set-theoretically. (2.3)

Consider the boundary Up of Zp. By construction, the boundary Up of Zp is iden-
tical to

Up = Zp \ pZp = {x ∈ Zp : |x|p = 1}. (2.4)

Similarly, the subsets pkUp are the boundaries of pkZp satisfying

pkUp = pkZp \ pk+1Zp for all k ∈ Z.

We call the subset Up of Zp in (2.4) the unit circle of Qp, and all elements of Up are
said to be units of Qp.

Therefore, by (2.3) and (2.4), one obtains that

Qp =

∞⊔
k=−∞

pkUp, set-theoretically, (2.5)

where t means the disjoint union.

Fact 2.2 ([14]). The p-prime field Qp is a Banach space and it is locally compact. In
particular, the unit disk Zp is compact in Qp.

Define now the addition on Qp by( ∞∑
n=−N1

anp
n

)
+

( ∞∑
n=−N2

bnp
n

)
=

∞∑
n=−max{N1,N2}

cnp
n (2.6)

for N1, N2 ∈ N, where the summands cnpn satisfies that

cnp
n def

=

 (an + bn)pn if an + bn < p,
pn+1 if an + bn = p,
snp

n+1 + rnp
n if an + bn = snp+ rn,

for all n ∈ {−max{N1, N2}, . . . , 0, 1, 2, . . .}.
Next, define the multiplication of two units “in Qp” by( ∞∑

k1=0

ak1p
k1

)( ∞∑
k2=0

bk2p
k2

)
=

∞∑
n=−N

cnp
n, (2.7)

where

cn =
∑

k1+k2=n

(
rk1,k2ik1,k2 + sk1−1,k2i

c
k1−1,k2 + sk1,k2−1i

c
k1,k2−1 + sk1−1,k2−1i

c
k1−1, k2−1

)
,
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where
ak1bk2 = sk1,k2p+ rk1,k2 ,

by the division algorithm, and

ik1,k2 =

{
1 if ak1bk2 < p,

0 otherwise,

and
ick1,k2 = 1− ik1,k2

for all k1, k2 ∈ N0. So, “on Qp”, the multiplication is well-defined by( ∞∑
k1=−N1

ak1p
k1

)( ∞∑
k2=−N2

bk2p
k2

)
=

=
(
p−N1

)
(p−N2)

( ∞∑
k1=0

ak1−N1p
k1

)( ∞∑
k2=0

bk1−N2p
k2

)
.

(2.8)

Then, under the addition (2.6) and the multiplication (2.8), the algebraic triple
(Qp,+, ·) becomes a field for all primes p. Thus the p-prime fields Qp are algebraically
fields.

Fact 2.3. Every p-prime field Qp with the binary operations (2.6) and (2.8) is a field.

Moreover, the Banach filed Qp is also a (unbounded) Haar-measure space
(Qp, σ(Qp), ρp), for all primes p, where σ(Qp) means the σ-algebra of Qp, consisting
of all measurable subsets of Qp. Moreover, this measure ρp satisfies that

ρp
(
a+ pkZp

)
= ρp

(
pkZp

)
=

1

pk
=

= ρ
(
pkZ×p

)
= ρ

(
a+ Z×p

) (2.9)

for all a ∈ Qp and k ∈ Z, where Z×p
def
= Zp \ {0}. Also, one has

ρp(a+ Up) = ρp (Up) = ρp (Zp \ pZp) =

= ρp (Zp)− ρp (pZp) = 1− 1

p

for all a ∈ Q. Similarly, we obtain that

ρp
(
a+ pkUp

)
= ρ

(
pkUp

)
=

1

pk
− 1

pk+1
(2.10)

for all a ∈ Q and k ∈ Z (see Chapter IV of [14]).

Fact 2.4. The Banach field Qp is an unbounded Haar-measure space, where ρp
satisfies (2.9) and (2.10), for all primes p.
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The above three facts show that Qp is a unbounded Haar-measured, locally com-
pact Banach field, for all primes p.

Definition 2.5. Let P = {all primes} ∪ {∞}. The adele ring AQ = (AQ,+, ·) is
defined by the set

{(xp)p∈P : xp ∈ Qp, almost all xp ∈ Zp, for p ∈ P}, (2.11)

with identification Q∞ = R, and Z∞ = [0, 1], the closed unit interval in R, equipped
with the product topology of {Qp}p∈P , and with the product measure ρ = ×

p∈P
ρp,

and with operations
(xp)p + (yp)p = (xp + yp)p (2.12)

and
(xp)p(yp)p = (xpyp)p (2.13)

for all (xp)p, (yp)p ∈ AQ.

Indeed, the algebraic structure AQ is a ring. Also, under the product topology,
the adele ring AQ is also a locally compact Banach space having its measure.
Set-theoretically,

AQ ⊆
∏
p∈P

Qp = R×

 ∏
p:prime

Qp

 .

In fact, by the very definition of AQ, it is a weak direct product Π′
p∈P

Qp of prime

fields {Qp}p∈P , i.e.,
AQ =

∏′

p∈P
Qp,

where
∏′ means the weak direct product, i.e., if

(x∞, x2, x3, x5, x7, x11, . . .) ∈ AQ,

then most of xp are contained in the unit disks Zp, but only finitely many xq are
in Qq, for p, q ∈ P.

The product measure ρ = ×
p∈P

ρp of the adele ring AQ is well-defined on the

σ-algebra σ(AQ), with identification ρ∞ = ρR, the usual distance-measure on R = Q∞.

Fact 2.6. The adele ring AQ is an unbounded-measured locally compact Banach ring.

2.2. WEAK TENSOR PRODUCT STRUCTURES

Let Xi be arbitrary sets, for i ∈ Λ, where Λ means any countable index set. Let

gi : Xi → Xi (2.14)

be well-defined functions for all i ∈ Λ.
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Now, let X be the Cartesian product Π
i∈Λ

Xi of {Xi}i∈Λ. Define the subset X of X

by

X =

{
(xi)i ∈ X

∣∣∣∣ finitely many xi ∈ Xi, and
almost of all xi ∈ gi(Xi)

}
, (2.15)

determined by a system g = {gi}i∈Λ of (2.14). We denote this subset X by

X =
∏

g
i∈Λ

Xi.

It is clear that X is a subset of X, by the very definition (2.15). If gi are bijections
for all i ∈ Λ, then X is equipotent (or bijective) to X. However, in general, X is a
subset of X.

Definition 2.7. The subset X = Πg
i∈Λ

Xi of X = Π
i∈Λ

Xi, in the sense of (2.15), is

called the weak tensor product set of {Xi}i∈Λ induced by a system g = {gi}i∈Λ of
functions gi.

Let Qp be p-prime fields, for all p ∈ P. Define a function

gp : Qp → Qp

by

gp

(
p−N

( ∞∑
j=0

ajp
j
))

def
=

∞∑
j=0

ajp
j (2.16)

for all p−N
∑∞
j=0 ajp

j ∈ Qp (with N ∈ N∪{0}), for all p ∈ P. Then the image gp (Qp)
is identical to the compact subset Zp, the unit disk of Qp, for all p ∈ P. Therefore,
the adele ring AQ = Π′

p∈P
Qp is identified with

AQ =
∏

g
p∈P

Qp,

in the sense of (2.15), where g = {gp}p∈P is the system of functions gp of (2.16).
Remark here that, for example, if we have real number r in R = Q∞, with its

decimal notation
|r| =

∑
k∈Z

tk · 10−k = . . . t−2t−1t0.t1t2t3 . . .

with 0 ≤ tk < 10 in N, then

g∞(r) = 0.t1t2t3 . . . , (2.17)

with identification g∞(±1) = 1. Traditionally, we simply write AQ = Π′
p∈P

Qp as before

if there is no confusion.
Remark also that Xi’s of (2.14) and (2.15) may/can be algebraic structures (e.g.,

semigroups, or groups, or monoids, or groupoids, or vector spaces, etc.), or topological
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spaces (e.g., Hilbert spaces, or Banach spaces, etc.). One may put product topology on
the weak tensor product, with continuity on {gi}i∈Λ. Similarly, if Xi’s are topological
algebras (e.g., Banach algebras, or C∗-algebras, or von Neumann algebras, etc.), then
we may have suitable product topology, with bounded (or continuous) linearity on
{gi}i∈Λ.

In topological-∗-algebraic case, to distinguish with other situations, we use the
notation ⊗Φ

i∈Λ
, instead of using ΠΦ

i∈Λ
, for any system Φ of functions.

Remark 2.8. Let Xi be algebras (or topological algebras, or topological ∗-algebras
etc.), for i ∈ Λ. Then the weak tensor product ⊗Φ

i∈Λ
induced by a system Φ becomes

a conditional sub-structure of the usual tensor product ⊗C
i∈Λ

, whenever functions in

the system Φ are algebraic (resp., continuous-algebraic, resp., continuous-∗-algebraic)
homomorphisms. In such a case, our weak tensor product algebras (resp., topolog-
ical algebras, or topological ∗-algebras) are subalgebras (resp., topological subalge-
bras, resp., topological ∗-subalgebras) of the usual tensor product algebras (resp.,
topological algebras, resp., topological ∗-algebras), i.e., ⊗Φ

i∈Λ
Xi are well-determined

sub-structures of ⊗C
i∈Λ

Xi, whenever functions Φi in Φ preserve the structures of Xi’s

to those of Φi(Xi) for all i ∈ Λ.

3. BANACH SPACES Xp AND XQ

In this section, we define normed spaces where our operators act. Over prime fields
Qp, we introduce Banach spaces Xp, for all primes p, and similarly, over the adele ring
AQ, we define a Banach space XQ.

3.1. BANACH SPACES Xp OVER Qp
Recall that, in [3] and [5], we defined n-products Qnp of Qp for n ∈ N. Here, Qnp is the
Cartesian product of n-copies of Qp, as a set. So, all elements of Qnp have their forms,
n-tuples of p-adic numbers. By defining a norm | · |p:n on Qnp ,

|(x1, . . . , xn)|p:n
def
= max{|xj |p : j = 1, . . . , n},

for all (x1, . . . , xn) ∈ Qnp , one can understand Qnp as a normed space. Moreover, it is
a Banach space because Qp is a Banach space.

We are interested only in the case where n =∞.
Define now a set Xp by a collection of all Qp-sequences, i.e.,

Xp
def
= {(xn)∞n=1 : xn ∈ Qp for all n ∈ N}. (3.1)

The set Xp of (3.1) is identical to Q∞p (briefly mentioned in [3]) as “sets”. Define
a vector addition on Xp by

(xn)∞n=1 + (yn)∞n=1 = (xn + yn)∞n=1 (3.2)
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for all (xn)∞n=1, (yn)∞n=1 ∈ Xp, where xn + yn of the right-hand side of (3.2) is in the
sense of (2.6).

Also, define a Qp-scalar multiplication on Xp by

x(xn)∞n=1 = (xxn)∞n=1 (3.3)

for all x ∈ Qp, and (xn)∞n=1 ∈ Xp, where xxn of the right-hand side of (3.3) is in the
sense of (2.8).

Proposition 3.1. The set Xp of (3.1) is a well-defined vector space over a field Qp
equipped with (3.2) and (3.3).

From now on, we understand Xp as a vector space over a field Qp.
Define now a norm ‖ · ‖p on the vector space Xp by

‖(xn)∞n=1‖p
def
= sup{|xj |p : j ∈ N} (3.4)

for all (xn)∞n=1 ∈ Xp.

Proposition 3.2. Let Xp be the vector space (3.1) over Qp, and let ‖ · ‖p be a
morphism (3.4). Then it is a well-defined norm on Xp, i.e., (Xp, ‖ · ‖p) is a normed
space over Qp. Moreover, this norm ‖ · ‖p is non-Archimedean in the sense that

‖α+ β‖p ≤ max{‖α‖p, ‖β‖p}

for all α, β ∈ Xp.

Proof. Let Xp be given as above, and ‖ · ‖p be as in (3.4). By definition,

‖α‖p ≥ 0 for all α ∈ Xp. (3.5)

Now, let x ∈ Qp, and α = (xn)∞n=1 ∈ Xp. If ‖α‖p = |xo|p , for some
xo ∈ {x1, x2, . . .} (by (3.4)), then

‖xαp‖p = |xxo|p =

=
∣∣(p−Nxβx

)
(p−Nxoβxo

)
∣∣
p

=
∣∣p−Nxp−Nxo (βxβxo

)
∣∣
p

=

whenever x = p−Nxβx and xo = p−Nxoβxo
, with Nx, Nxo

∈ N∪{0}, and βx, βxo
∈ Zp

(see Section 2.1)

=
∣∣∣p−(Nx+Nxo )(βxβxo

)
∣∣∣ = pNx+Nxo =

=
(
pNx

) (
pNxo

)
= |x|p |xo|p = |x|p ‖(xn)∞n=1‖p = |x|p ‖α‖p ,

and hence
‖xα‖p = |x|p‖α‖p for all x ∈ Qp and α ∈ Xp. (3.6)
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Now, let α = (xn)∞n=1, β = (yn)∞n=1 ∈ Xp. Then

‖α+ β‖p = ‖(xn + yn)∞n=1‖p =

= sup{|xj + yj |p : j ∈ N} =

= |xo + yo|p ≤ (for some o ∈ N)

≤ max{|xo|p , |yo|p} ≤

by the non-Archimedean property of | · |p

≤ max{‖α‖p, ‖β‖p},

i.e.,
‖α+ β‖p ≤ max{‖α‖p, ‖β‖p} for all α, β ∈ Xp. (3.7)

Therefore, by (3.7), one can obtain that

‖α+ β‖p ≤ ‖α‖p + ‖β‖p for all α, β ∈ Xp. (3.8)

Therefore, by (3.5), (3.6) and (3.8), the morphism ‖ · ‖p is a well-defined norm
on Xp. Also, by (3.7), this norm is non-Archimedean. Equivalently, the pair (Xp, ‖·‖p)
is a normed space over a field Qp.

By the above proposition, the pair (Xp, ‖·‖p) is a non-Archimedean normed vector
space over the p-prime field Qp. We denote this pair simply by Xp.

Definition 3.3. Let Xp be a normed vector space as above. Under the ‖ · ‖p-norm
topology, let Xp be the completion ofXp.We call Xp, the p-adic Banach space over Qp.

3.2. A BANACH SPACE XQ OVER AQ

Similar to Section 3.1, we define a set XQ by a set of all AQ-sequences over the adele
ring AQ, i.e.,

XQ
def
= {(an)∞n=1 : an ∈ AQ for all n ∈ N}.

Define now a vector addition on XQ by

(an)∞n=1 + (bn)∞n=1 = (an + bn)∞n=1 (3.9)

for all (an)∞n=1, (bn)∞n=1 ∈ XQ, where an + bn in the right-hand side of (3.9) is in the
sense of (2.12) for all n ∈ N.

Also, define a scalar multiplication by

a(an)∞n=1 = (aan)∞n=1 (3.10)

for all a ∈ AQ and (an)∞n=1 ∈ XQ, where the entries aan in the right-hand side of
(3.10) is in the sense of (2.13).

The operations (3.9) and (3.10) are well-defined in XQ.
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Proposition 3.4. The set XQ, equipped with (3.9) and (3.10), is a vector space over
a ring AQ.

From now on, we understand XQ as a vector space over AQ.
Recall that as a weak direct product Π′

p∈P
Qp (equivalently, the weak tensor product

Πg
p∈P

Qp in the sense of Section 2.1) of prime fields Qp, the adele ring AQ has its norm

| · |Q : AQ → R+
0 ,

|(xp)p∈P |Q
def
=
∏
p∈P
|xp|p for all (xp)p∈P ∈ AQ, (3.11)

with identity: |x∞|∞ = |x∞|, the absolute value of x∞, for all x∞ ∈ Q∞ = R.
Remark that, since almost of all entries xq of (xp)p∈P ∈ AQ are contained in Zq,

for q ∈ P,
|(xp)p∈P |Q <∞.

Furthermore, one can have

|(xp)p∈P + (yp)p∈P |Q = |(xp + yp)p∈P |Q =

=
∏
p∈P
|xp + yp|p =

= |x∞ + y∞|+
∏

p:prime

|xp + yp|p ≤

≤ |x∞|+ |y∞|+
∏

p:prime

max{|xp|p , |yp|p} ≤

(3.12)

by the non-Archimedean property of | · |p, for all primes p

≤
∏
p∈P
|xp|p +

∏
p∈P
|yp|p = |(xp)p∈P |Q + |(yp)p∈P |Q

for all (xp)p∈P , (yp)p∈P ∈ AQ. So, indeed, the morphism (3.11) is a well-defined norm
on AQ, satisfying (3.12).

Now, define a morphism ‖ · ‖Q : XQ → R+
0 on XQ by

‖(an)∞n=1‖Q
def
= sup{|aj |Q : j ∈ N} (3.13)

for all (an)∞n=1 ∈ XQ, where R+
0 = {r ∈ R : r ≥ 0}.

Proposition 3.5. The vector space XQ equipped with the morphism ‖ · ‖Q of (3.13)
is a normed space over a ring AQ.

Proof. By definition, it is clear that

‖α‖Q ≥ 0 for all α ∈ XQ.
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Now, let a = (xp)p∈P ∈ AQ and α = ((xn:p)p∈P)
∞
n=1 ∈ XQ. If

‖α‖Q = |(xo:p)p∈P |Q for some o ∈ N

in R+
0 ∪ {∞}, then one can have that

‖aα‖Q =
∥∥((xp)p∈P) ((xn:p)p∈P)

∞
n=1

∥∥
Q =

=
∥∥((xp)p∈P(xn:p)p∈P)

∞
n=1

∥∥
Q =

=
∥∥∥((xpxn:p)p∈P

)∞
n=1

∥∥∥
Q

=

= sup
{
|(xpxn:p)p∈P |Q : n ∈ N

}
=

= sup

∏
p∈P
|xpxn:p|p : n ∈ N

 =

= sup

∏
p∈P
|xp|p |xn:p|p : n ∈ N

 =

=
∏
p∈P
|xp|p |xo:p|p = (for some o ∈ N)

=

∏
p∈P
|xp|p

∏
p∈P
|xo:p|p

 =

by (2.13)
= |a|Q ‖α‖Q .

So, for a ∈ AQ and α ∈ XQ,
‖aα‖Q = |a|Q ‖α‖Q .

Also, with help of (3.12), one can obtain

‖α+ β‖Q ≤ ‖α‖Q + ‖β‖Q for all α, β ∈ XQ.

Indeed, if α = ((xn:p)p∈P)
∞
n=1 , and β = ((yn:p)p∈P)

∞
n=1 in XQ, then

‖α+ β‖Q =
∥∥((xn:p)p∈P + (yn:p)p∈P)

∞
n=1

∥∥
Q =

=
∥∥∥((xn:p + yn:p)p∈P

)∞
n=1

∥∥∥
Q

=

= sup
{
|(xn:p + yn:p)p∈P |Q : n ∈ N

}
=

= |(xo:p + yo:p)p∈P |Q ≤ (for some o ∈ N)

≤ |(xo:p)p∈P |Q + |(yo:p)p∈P |Q ≤ (by (3.12))

≤ ‖α‖Q + ‖β‖Q .

Therefore, the pair (XQ, ‖ · ‖Q) is a normed space over a ring AQ.
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The above proposition shows that the vector space XQ with ‖ · ‖Q is a normed
space over the adele ring AQ.

Definition 3.6. Let XQ be the ‖ · ‖Q-norm-topology completion of the normed
space XQ. We call XQ the adelic Banach space over AQ.

3.3. BANACH SPACES XQ AND Xp
Construct a topological product vector space X = Π

p∈P
Xp of p-adic Banach spaces

Xp, equipped with the norm

‖(vp)p∈P‖⊗
def
=
∏
p∈P
‖vp‖p , (3.14)

where ‖ · ‖p are in the sense of (3.4), for all p ∈ P. It is not difficult to check that
this vector space X is over the adele ring AQ. Indeed, since each p-adic Banach space
Xp is over Qp, for p ∈ P, the space X is over Π

p∈P
Qp (containing Π′

p∈P
Qp). Thus, X is

over AQ.
Naturally, we have the vector addition

(vp)p∈P + (wp)p∈P = (vp + wp)p∈P on X

for all (vp)p∈P , (wp)p∈P ∈ X , and the AQ-scalar product

(tp)p∈P(vp)p∈P = (tpvp)p∈P on X

for all (tp)p∈P ∈ AQ and (vp)p∈P ∈ X .
In the rest of this section, understand X as a normed vector space with its norm

‖ · ‖⊗ of (3.14).
Recall now functions gp on Qp as in (2.16) and (2.17), for all p ∈ P, i.e.,

gp

(
p−N (

∞∑
n=0

anp
n)

)
def
=

∞∑
n=0

anp
n

for all p−N (
∑∞
n=0 anp

n) ∈ Qp, with N ∈ N ∪ {0}, and 0 ≤ an < p.
Then they are kind of normalization maps, compressing elements of Qp to those

of Zp, the unit disks of Qp. We call gp the p-normalizations on Qp for all p ∈ P.
Define now a function ϕp : Xp → Xp on the p-adic Banach space Xp by

ϕp ((xn)∞n=1)
def
= (gp(xn))

∞
n=1 (3.15)

for all (xn)∞n=1 ∈ Xp, for all p ∈ P. The functions ϕp are well-defined continuous
function on Xp for all p ∈ P.

Notice however that each ϕp is “not” Qp-linear, because

ϕp ((xn)∞n=1 + (yn)∞n=1) = ϕp ((xn + yn)∞n=1) = (gp(xn + yn))
∞
n=1
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and
gp(xn + yn) 6= gp(xn) + gp(yn),

in general, for n ∈ N. For example, let

xn = p−3 + p−2 + 2p−1 + p0 + 0 · p+ p2 + p3 + . . . ,

and
yn = p−2 + p−1 + p0 + p+ p2 + p3 + . . .

in Qp, for some n ∈ N. If p = 3, then

g3(xn + yn) = g3

(
p−3 + 2p−2 + 3p−1 + 2p0

+ p+ 2p2 + 2p3 + . . .
)

=

= g3

(
p−3 + 2p−2 + p0 + 2p0

+ p+ 2p2 + 2p3 + . . .
)

=

= g3

(
p−3 + 2p−2 + 3p0

+ p+ 2p2 + 2p3 + . . .
)

=

= g3

(
p−3 + 2p−2 + p+ p+ 2p2 + 2p3 + . . .

)
=

= g3

(
p−3 + 2p−2 + 2p+ 2p2 + 2p3 + · · ·

)
=

= 2p+ 2p2 + 2p3 + . . . ,

but

g3(xn) + gp(yn) = (p0 + 0 · p+ p2 + p3 + · · ·) + (p0 + p+ p2 + p3 + . . .) =

= 2p0 + p+ 2p2 + 2p3 + 2p4 + . . . .

So, in general, gp are not Qp-linear, and hence ϕp are “not” Qp-linear, i.e.,

ϕp ((xn)∞n=1 + (yn)∞n=1) 6= ϕp ((xn)∞n=1) + ϕp ((yn)∞n=1) ,

in general. However, it is a well-defined (topological continuous) function on the topo-
logical space Xp.

These functions ϕp satisfy that

‖ϕp ((xn)∞n=1)‖p =
∥∥(gp(xn))

∞
n=1

∥∥
p

=

= sup
{
|gp(xn)|p : n ∈ N

}
≤ 1

for all (xn)∞n=1 ∈ Xp, for p ∈ P, i.e., this map is understood as a normalization on Xp,
for p ∈ P.

Definition 3.7. We call the functions ϕp of (3.14) the p-normalization on the
p-adic Banach space Xp for all p ∈ P. Also, we denote the system {ϕp}p∈P of
p-normalizations simply by ϕ.

Let X =
∏
p∈P Xp be given as above, equipped with its norm ‖ · ‖⊗ in the sense

of (3.14). As a “subset” of X , define Xo by

Xo
def
=

(vp)p∈P ∈ X

∣∣∣∣∣∣
vp ∈ Xp for finitely many p,

and all other aq are
contained in ϕq (Xq)

 , (3.16)
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i.e., Xo is the weak tensor product Πϕ
p∈P
Xp of {Xp}p∈P , induced by the system ϕ =

{ϕp}p∈P of p-normalizations ϕp (3.15) on Xp. Under the inherited operations and
norm, also denoted by ‖ · ‖⊗, from X , this set Xo is a normed vector space over the
adele ring AQ, too.

Definition 3.8. Let Xo be the normed space (3.16) over AQ. Denote the
‖ · ‖⊗-norm-topology closure of Xo by X.

The following proposition is the summary of the above discussion.

Proposition 3.9. The weak tensor product space X = Πϕ
p∈P
Xp of X = Π

p∈P
Xp is a

Banach space over the adele ring AQ.

We now show the adelic Banach space XQ is Banach-space isomorphic to the
weak tensor product Banach space X of p-adic Banach spaces {Xp}p∈P induced by
ϕ = {ϕp}p∈P of p-normalizations.

Theorem 3.10. Let XQ be the adelic Banach space over the adele ring AQ, and let
X be the weak tensor product Banach space Πϕ

p∈P
Xp of p-adic Banach spaces {Xp}p∈P ,

induced by the system ϕ = {ϕp}p∈P of p-normalizations ϕp (3.15) on Xp. Then XQ
and X are Banach-space isomorphic over AQ, i.e.,

XQ
Banach

=
∏

ϕ
p∈P

Xp, (3.17)

where “Banach
= ” means “being Banach-space isomorphic”.

Proof. Define now a morphism
Φ: XQ → X

by the function satisfying

Φ
((

(xn:p)p∈P

)∞
n=1

)
def
=
∏
p∈P

(
(xn:p)

∞
n=1

)
in X (3.18)

for all ((xn:p)p∈P)
∞
n=1 =

∏∞
n=1(xn:p)p∈P ∈ XQ. In other notations,

Φ
((

(xn:p)p∈P

)∞
n=1

)
def
=
(
(xn:p)

∞
n=1

)
p∈P .

Then it is a well-defined “injective” map from the adelic Banach space XQ to the
weak direct product Banach space X.

Similarly, define a morphism

Ψ: X→ XQ
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by

Ψ
((

(xn:p)
∞
n=1

)
p∈P

)
def
=
((

(xn:p)p∈P

)∞
n=1

)
in XQ (3.19)

for all
(
(xn:p)

∞
n=1

)
p∈P ∈ X. Then one can verify that Ψ is a well-defined injective map,

too. Especially, the well-definedness of Ψ is guaranteed by the weak tensor product
structure of X. By the injectivity and (3.19), we have

Φ−1 = Ψ,

i.e., the morphism Φ of (3.18) is a bijective function from XQ onto X, with its inverse Ψ.
Now, let ((xn:p)p∈P)

∞
n=1 , ((yn:p)p∈P)

∞
n=1 ∈ XQ. Then

Φ
(
((xn:p)p∈P)

∞
n=1 + ((yn:p)p∈P)

∞
n=1

)
=

= Φ
((

(xn:p + yn:p)p∈P

)∞
n=1

)
=

=
∏
p∈P

(
(xn:p + yn:p)

∞
n=1

)
=
(
(xn:p + yn:p)

∞
n=1

)
p∈P =

=

∏
p∈P

((xn:p)
∞
n=1)

+

(
Π
p∈P

((yn:p)
∞
n=1)

)
=

= Φ
(
((xn:p)p∈P)

∞
n=1

)
+ Φ

(
((yn:p)p∈P)

∞
n=1

)
.

Thus, we obtain that

Φ (α+ β) = Φ(α) + Φ(β) in X (3.20)

for all α, β ∈ XQ.
Also, let (ap)p∈P ∈ AQ, and let ((xn:p)p∈P)

∞
n=1 ∈ XQ. Then

Φ
(
((ap)p∈P)

(
((xn:p)p∈P)

∞
n=1

))
= Φ

(
((apxn:p)p∈P)

∞
n=1

)
=

=
∏
p∈P

(apxn:p)
∞
n=1 =

=

(
Π
p∈P

ap

)∏
p∈P

(xn:p)
∞
n=1

 =

= ((ap)p∈P)
(
Φ
(
((xn:p)p∈P)

∞
n=1

))
,

and hence

Φ (aα) = aΦ(α) in X (3.21)

for all a ∈ AQ and α ∈ XQ.
Thus, by (3.20) and (3.21), this bijective map Φ is a AQ-vector-space isomorphism.
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Also, one can check that∥∥Φ
(
((xn:p)p∈P)

∞
n=1

)∥∥
⊗ =

∥∥∥((xn:p)
∞
n=1)p∈P

∥∥∥
⊗

=

where ‖ · ‖⊗ is the norm (3.14) on X

=
∏
p∈P
‖(xn:p)

∞
n=1‖p =

where ‖ · ‖p means the Xp-norm in the sense of (3.4)

=
∏
p∈P

(
sup{|xn:p|p : n ∈ N}

)
≤

≤
∏
p∈P

∣∣xop:p

∣∣
p

= (for some op ∈ N, for p ∈ P)

where |·|p is the Qp-norm in the sense of Section 2.1

=
∣∣(xop:p)p∈P

∣∣
Q =

where |·|Q is the AQ-norm (3.11)

=
∥∥((xn:p)p∈P)

∞
n=1

∥∥
Q ,

where ‖ · ‖Q is the norm (3.13) on the adelic Banach space XQ. So,∥∥Φ
(
((xn:p)p∈P)

∞
n=1

)∥∥
⊗ ≤

∥∥((xn:p)p∈P)
∞
n=1

∥∥
Q .

So, this AQ-vector-space isomorphism Φ is bounded. Similarly, one can find that∥∥Ψ
(
((xn:p)p∈P)

∞
n=1

)∥∥
Q ≤

∥∥∥((xn:p)
∞
n=1)p∈P

∥∥∥
⊗
.

Since Ψ = Φ−1, we obtain that∥∥∥Φ
((

(xn:p)p∈P

)∞
n=1

)∥∥∥
⊗

=
∥∥((xn:p)p∈P)

∞
n=1

∥∥
Q .

Therefore, the AQ-vector-space isomorphism Φ is isometric. And hence, this morphism
Φ is a Banach-space isomorphism, equivalently, the Banach spaces XQ and X are
isomorphic over AQ.

The above characterization (3.17) shows that our adelic Banach space XQ is
Banach-space isomorphic to the weak tensor product Banach space Πϕ

p∈P
Xp of p-adic
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Banach spaces Xp induced by the system ϕ = {ϕp}p∈P of p-normalizations ϕp. In
particular, one has an isometric isomorphism

Φ
((

(xn:p)p∈P

)∞
n=1

)
=
(
(xn:p)

∞
n=1

)
p∈P in

∏
ϕ

p∈P

Xp

for all
(

(xn:p)p∈P

)∞
n=1
∈ XQ.

In the rest of this paper, we use XQ and Πϕ
p∈P
Xp, alternatively, as same Banach

spaces.
Also, by (3.17), if we define an operator T acting on the Banach space XQ, then

one may understand T as an (equivalent form of) operator acting on Πϕ
p∈P
Xp over AQ.

We will consider it in the following sections.

4. p-ADIC OPERATORS ON Xp

In this section, we study p-adic operators acting on Xp, for primes p. Throughout
this section, let’s fix a prime p, and let Xp be the corresponding p-adic Banach space
consisting of all Qp-sequences (xn)∞n=1 over the p-prime field Qp.

As we have seen in Section 3.1, the p-adic Banach space is well-defined Banach
space Xp equipped with its norm ‖ · ‖p, satisfying

‖(xn)∞n=1‖p = sup{|xn|p : n ∈ N} (4.1)

for all (xn)∞n=1 ∈ Xp. Define the unit ball Bp of Xp, and the unit circle Up of Xp by

Bp
def
= {(xn)∞n=1 ∈ Xp : ‖(xn)∞n=1‖p ≤ 1} (4.2)

and
Up

def
= {(xn)∞n=1 ∈ Xp : ‖(xn)∞n=1‖p = 1}.

Lemma 4.1. Let Bp and Up be in the sense of (4.2), for a prime p. Then:

(xn)∞n=1 ∈ Bp in Xp if and only if xn ∈ Zp in Qp for all n ∈ N. (4.3)

(xn)∞n=1 ∈ Up in Xp, (4.4)

if and only if

(i) (xn)∞n=1 ∈ Bp, and
(ii) there exists at least one entry xo in (xn)∞n=1 such that xo ∈ Up in Qp.

Proof. The proof of (4.3) is by the very definition (4.1) of Xp-norm ‖·‖p. If we assume
that there exists at least one j in N such that xj = p−Nx1, with “N ∈ N”, in (xn)∞n=1,
(equivalently, if xj ∈ Qp \ Zp), then

‖(xn)∞n=1‖p ≥ |xj |p = pN > 1.
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Conversely, if all entries xj of (xn)∞n=1 are in Zp, then ‖(xn)∞n=1‖p ≤ 1, since
|xn|p ≤ 1 for all n ∈ N.

So, the statement (4.3) holds.
Now, suppose (xn)∞n=1 ∈ Up, and assume that either a condition (i) or (ii) does not

hold. First, suppose (xn)∞n=1 ∈ Xp \ Bp. Then, by the proof of (4.3), ‖(xn)∞n=1‖ > 1.
It contradicts our assumption that (xn)∞n=1 ∈ Up. Now, suppose there does not exist
entry xn in (xn)∞n=1 ∈ Bp, such that xn ∈ Up. This means that all entries of (xn)∞n=1

are contained in pkZp, for some k ∈ N, i.e.,

‖(xn)∞n=1‖p ≤
1

pk
− 1

pk+1
< 1 for some k ∈ N,

and hence (xn)∞n=1 /∈ Up. It contradicts our assumption.
Conversely, an element (xn)∞n=1 of Xp satisfies both conditions (i) and (ii). Then

‖(xn)∞n=1‖p = sup{|xn|p : n ∈ N} = |xo|p = 1,

where xo ∈ Up in (xn)∞n=1 for some o ∈ N. Therefore, the statement (4.4) holds.

Consider certain operators (continuous or bounded Qp-linear transformations) act-
ing on Xp.

Define naturally (∞×∞)-Qp-matrices T by the rectangular arrays of p-adic num-
bers,

T = [xij ]∞×∞
denote

= [xij ] with xij ∈ Qp.

Denote the collection of all such Q-matrices byMp.
On Mp, define the Qp-matrix addition, Qp-scalar multiplication, and the

Qp-matrix multiplication just like in operator theory. Then Mp becomes an (pure
algebraic) algebra over Qp.

Act T = [xij ] ∈Mp on Xp by the rule:

T ((xn)∞n=1) = [xij ] ((xn)∞n=1) =
( ∞∑
j=1

xijxj

)∞
i=1

, (4.5)

where the addition
∑

and the multiplication xijxj at the far right-side of (4.5) are
in the sense of (2.6), and (2.8), respectively.



p-adic Banach space operators and adelic Banach space operators 49

Then, the Qp-matrices of Mp are Qp-linear transformations on Xp. Indeed, if
T = [xij ] inMp, then

T ((xn)∞n=1 + (yn)∞n=1) = T ((xn + yn)∞n=1) =

= [xij ] ((xn + yn)∞n=1) =

( ∞∑
j=1

xij(xj + yj)

)∞
i=1

=

=

( ∞∑
j=1

(xijxj + xijyj)

)∞
i=1

=

=

( ∞∑
j=1

xijxj +

∞∑
j=1

xijyj

)∞
i=1

=

=

( ∞∑
j=1

xijxj

)∞
i=1

+

( ∞∑
j=1

xijyj

)∞
i=1

=

= T ((xn)∞n=1) + T ((yn)∞n=1)

for all (xn)∞n=1, (yn)∞n=1 ∈ Xp. Thus, we have

T (α+ β) = T (α) + T (β) for all α, β ∈ Xp. (4.6)

Also, for x ∈ Qp and (xn)∞n=1 ∈ Xp,

T (x(xn)∞n=1) = T ((xxn)∞n=1) = [xij ] ((xxn)∞n=1) =

( ∞∑
j=1

xijxxj

)∞
i=1

=

=

(
x

∞∑
j=1

xijxj

)∞
i=1

= x

( ∞∑
j=1

xijxj

)∞
i=1

= xT ((xn)∞n=1) .

So, we get that
T (xα) = xT (α) for all x ∈ Qp, α ∈ Xp. (4.7)

Therefore, by (4.6) and (4.7), one obtains the following lemma.

Lemma 4.2. The Qp-algebraMp of all Qp-infinite-matrices is realized on the p-adic
Banach space Xp with its representation (4.5).

However, the continuity (or boundedness) of elements of Mp is not guaranteed.
Like in operator theory, define the operator-norm ‖ · ‖ onMp by

‖T‖ def= sup{‖T (α)‖p : ‖α‖p = 1}. (4.8)

By (4.2), one can re-define the operator-norm ‖ · ‖ of (4.8) by

‖T‖ def= sup{‖T (α)‖p : α ∈ Up}. (4.9)

Remark here that the norm ‖ · ‖ of (4.8) is unbounded in general onMp. So, we
construct the maximal subalgebra Mp ofMp, where ‖ · ‖ is complete on Mp.



50 Ilwoo Cho

Definition 4.3. Let Mp be the Qp-algebra of Qp-infinite-matrices, acting on the
p-adic Banach space Xp. Let ‖ · ‖ be the operator norm (4.8) or (4.9) on Mp. Let
Mp be the maximal subalgebra ofMp (consisting of Qp-infinite-matrices), where ‖ · ‖
is complete on Mp. All elements of Mp are called p-adic operators. We call Mp, the
p-adic operator algebra (on the p-adic Banach space Xp).

The following theorem characterizes an operator-algebraic property of the p-adic
operator algebra Mp.

Theorem 4.4. Let Mp be the p-adic operator algebra on the p-adic Banach space Xp.
Then Mp is a Banach ∗-algebra over the p-prime field Qp.

Proof. Recall that Mp is the ‖ · ‖p-norm completion of an (pure algebraic) algebra
Mp of all infinite-Qp-matrices acting on Xp, over Qp. Thus, it is a Banach algebra
over Qp acting on Xp.

Define now a unary operation (∗) by

[xij ]
∗ def= [xji] for all [xij ] ∈Mp. (4.10)

Then the operation (4.10) satisfies

([xij ]
∗)
∗

= [xji]
∗ = [xij ] for all [xij ] ∈Mp. (4.11)

Also, it holds

([xij ] + [yij ])
∗ = [xij + yij ]

∗ = [xji + yji] = [xji] + [yji] = [xij ]
∗ + [yij ]

∗ (4.12)

and

([xij ][yij ])
∗

=

[ ∞∑
k=1

xikykj

]
ij

∗ =

[ ∞∑
k=1

yjkxki

]
= [yji][xji] = [yij ]

∗[xij ]
∗ (4.13)

for all [xij ], [yij ] ∈Mp.
So, by (4.11), (4.12) and (4.13), the p-adic operator algebra Mp is a Banach

algebra equipped with adjoint (∗) of (4.10). Equivalently, Mp is a Banach ∗-algebra
over Qp.

The above theorem shows that our p-adic operators are elements of the Banach
∗-algebra Mp over the p-prime field Qp for all primes p.

4.1. p-ADIC DIAGONAL OPERATORS

As a starting point, we consider diagonal operators in the p-adic operator algebra Mp

acting on the p-adic Banach space Xp. Remark that T ∈Mp if and only if ‖T‖ <∞.
Assume a p-adic operator D has its form

D =


x1 0

x2

x3

0
. . .

 ∈Mp with xk ∈ Qp.
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We call such operators D, p-adic diagonal operators. Denote D by diag(xn)∞n=1,
whenever one wants to emphasize the diagonal entries.

Proposition 4.5. Let D = diag(xn)∞n=1 be a p-adic diagonal operator in Mp. Then

‖D‖ = ‖(xn)∞n=1‖p . (4.14)

Proof. Observe that

‖D‖ = sup{‖D((yn)∞n=1)‖p : (yn)∞n=1 ∈ Up} = sup{‖(xnyn)∞n=1‖p : (yn)∞n=1 ∈ Up} =

= sup
{

sup{|xnyn|p : (yn)∞n=1 ∈ Up
}

= sup
{

sup{|xn|p : n ∈ N}
}

=

by (4.3) and (4.4)

= sup{|xn|p : n ∈ N} = ‖(xn)∞n=1‖p .

Therefore, we have
‖diag(xn)∞n=1‖ = ‖(xn)∞n=1‖p .

Now, consider a special type of p-adic diagonal operators of Mp. Let Dp =
diag(p)∞n=1 be a p-adic diagonal operator of Mp, i.e., p

p
. . .


with

‖Dp‖ =
∥∥(p)θn=1

∥∥
p

= |p|p =
1

p
.

By Section 2.1, the p-prime field Qp has an embedded lattice

. . . ⊂ p2Zp ⊂ pZp ⊂ Zp ⊂ p−1Zp ⊂ p−2Zp ⊂ . . . . (4.15)

If x ∈ Qp, then there exists N ∈ N ∪ {0}, and x0 ∈ Zp, such that

x = p−Nx0 ∈ p−NZp.

So, the element px makes

px = p−N+1x0 ∈ p−N+1Zp.

So, the p-adic diagonal operator Dp acts like a shift (or a shift operator) on the
filtering (4.15).

Lemma 4.6. Let Dp be a p-adic diagonal operator diag(p)∞n=1 in the p-adic operator
algebra Mp. If (xn)∞n=1 ∈ Xp, with xn ∈ p−NnZp for Nn ∈ N ∪ {0}, for all n ∈ N,
then the image (yn)∞n=1 = Dp ((xn)∞n=1) satisfies that yn ∈ p−Nn+1Zp for all n ∈ N.
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Similar to Dp, one can define p-adic diagonal operators

Dpk = diag(pk)∞n=1 in Mp for all k ∈ N. (4.16)

It is trivial that the p-adic operators Dpk of (4.16) satisfy that

Dpk = Dk
p in Mp for all k ∈ N.

Then, by the modification of the above lemma, we obtain the following corollary.

Corollary 4.7. Let Dpk be a p-adic diagonal operator in the sense of (4.16) in the
p-adic Banach algebra Mp. If (xn)∞n=1 ∈ Xp with xn ∈ p−NnZp for Nn ∈ N∪ {0}, for
all n ∈ N, then the image (yn)∞n=1 = Dp ((xn)∞n=1) satisfies that yn ∈ p−Nn+kZp for
all n ∈ N.

By the above lemma and corollary, we obtain the following theorem, which provides
a normalization process among the p-adic diagonal operators.

Theorem 4.8. Let D = diag(xn)∞n=1 be an arbitrary p-adic diagonal operator in
Mp. Then there exist k ∈ N and the corresponding p-adic diagonal operator Dpk in
the sense of (4.16) such that

∥∥DpkD
∥∥ = 1.

Proof. Let D = diag(xn)∞n=1 be a p-adic diagonal operator in Mp. Then, by (4.14),
we have

‖D‖ = ‖(xn)∞n=1‖p = sup{|xn|p : xn ∈ Qp},

and assume there exists xo in (xn)∞n=1 ∈ Xp such that

‖D‖ = |xo|p = pno for some no ∈ Z.

Assume that No ∈ Z such that No + no = 0, in Z, i.e., No = −no. Define the p-adic
diagonal operator DpNo as in (4.16). Then

DpNoD = diag(pNoxn)∞n=1 in Mp,

with pNoxo ∈ Zp, by the above theorem. Hence,∥∥DpN0D
∥∥ = 1.

The above theorem shows that every p-adic diagonal operator D in the p-adic
operator algebra Mp is normalized to a certain p-adic diagonal operator D0, with
‖D0‖ = 1.

4.2. p-ADIC WEIGHTED SHIFTS

As a continuation for studying some nice examples for p-adic operators of the p-adic
Banach algebra Mp, acting on the p-adic Banach space Xp, we introduce natural shifts
(or shift operators) like in the usual operator theory (e.g., [16]).
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Consider a function U : Xp → Xp defined by

U ((x1, x2, . . .)) = (0, x1, x2, . . .) in Xp (4.17)

for all (xn)∞n=1 ∈ Xp. Then, as in [16], such an operator U is expressed by a p-adic
operator 

0 0
1 0

1 0
1 0

0
. . . . . .

 in Mp.

Definition 4.9. We call the p-adic operator U of Mp, in the sense of (4.17), the
p-adic (unilateral) shift.

Clearly, the p-adic operator Un = U . . . U︸ ︷︷ ︸
n-times

of the p-adic shift U , satisfies that:

Un ((x1, x2, . . .)) =
(

0, . . . , 0︸ ︷︷ ︸
n-times

, x1, x2, . . .
)
, (4.18)

on Xp for all (xn)∞n=1 ∈ Xp, for all n ∈ N. We say the p-adic operator Un are the
p-adic n-shifts, for all n ∈ N. By definition, the p-adic 1-shift is nothing but the p-adic
shift U of (4.17).

It is not difficult to check that

‖Un‖ = 1 for all n ∈ N,

because ∥∥∥Un((xn)∞n=1)
∥∥∥
p

=
∥∥∥(0, . . . . . . .., 0︸ ︷︷ ︸

n-times

, x1, x2, . . .
)∥∥∥

p
= ‖(xn)∞n=1‖p

for all (xn)∞n=1 ∈ Xp.
Proposition 4.10. If Un are the p-adic n-shifts, then

‖Un‖ = 1 for all n ∈ N. (4.19)

Let U∗ be the adjoint of the p-adic unilateral shift U. Then it has its Qp-matricial
form 

0 1 0
0 1

0 1

0
. . .

0
. . .

 in Mp,

i.e., it satisfies
U∗ ((x1, x2, x3, x4, . . . )) = (x2, x3, x4, . . . )

on Xp for all (xn)∞n=1 ∈ Xp.
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Proposition 4.11. Let Un be the p-adic n-shift. Then

Un∗Un = diag(1, 1, 1, . . .)

and
UnUn ∗ = diag

(
0, . . . , 0︸ ︷︷ ︸
n-times

, 1, 1, 1, . . .
)

for all n ∈ N.

Let D be a p-adic diagonal operator diag(xn)∞n=1 in Mp, and let U be the p-adic
unilateral shift. Then the product UD is equivalent to

0 0
x1 0

x2 0
x3 0

0
. . . . . .

 in Mp. (4.20)

Definition 4.12. The above new p-adic operator UD of (4.20) is called the p-adic
weighted shift with weights (xn)∞n=1 in Mp. The p-adic operators UnD are called the
p-adic weighted n-shifts, for all n ∈ N.

With help of (4.14) and (4.19), we obtain the following operator-norm computa-
tion. It is a p-adic version of the usual weighted-shift-norm computation (e.g., [16]).

Proposition 4.13. Let W = UnD be a p-adic weighted n-shift in Mp, for n ∈ N,
where Un is the p-adic n-shift and D = diag(xn)∞n=1 be a p-adic diagonal operator.
Then

‖W‖ = ‖(xn)∞n=1‖p . (4.21)

Proof. By definition, if W = UnD is a p-adic weighted n-shift, where D =
diag(xn)∞n=1 in Mp, then

‖W‖ = sup
{
‖W ((yn)∞n=1)‖p : (yn)∞n=1 ∈ Up

}
=

= sup
{∥∥∥(0, . . . , 0︸ ︷︷ ︸

n-times

, x1y1, x2y2, . . .
)∥∥∥

p
: (yn)∞n=1 ∈ Up

}
=

= sup
{
‖(xnyn)∞n=1‖p : (yn)∞n=1 ∈ Up

}
= ‖(xn)∞n=1‖p = ‖D‖,

by (4.14).

4.3. p-ADIC TOEPLITZ OPERATORS

Let U be the p-adic unilateral shift in the sense of (4.17) in the p-adic Banach algebra
Mp, acting on the p-adic Banach space Xp, for a fixed prime p. Now, we are interested
in the Banach ∗-subalgebra

Tp = Qp[U,U∗]
‖·‖
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of Mp, where Qp[U, U∗] is a module over {U, U∗} in the following sense, and where
Y
‖·‖

mean the ‖ · ‖-operator-norm closures of all subsets Y of Mp.
Define first a polynomial ring Qp[t1, t2] with two Qp-variables (or two

Qp-indeterminents) t1 and t2 over the p-prime field Qp by

Qp[t1, t2]
def
=

x0 +

n1∑
j=1

xjt
j
1 +

n2∑
i=1

xit
i
2

∣∣∣∣ xk ∈ Qp for all k,
and for all n1, n2 ∈ N

 .

Then it is a well-defined algebraic ring over a field Qp. Construct the module
Qp [U,U∗] by

Qp [U,U∗] = {f(U,U∗) : f(t1, t2) ∈ Qp[t1, t2]}, (4.22)

i.e., if T ∈ Qp [U,U∗] , then

T = x0Ip +

n1∑
j=1

xjU
j +

n2∑
i=1

xiU
∗i

for some n1, n2 ∈ N, where xk ∈ Qp, with identity:

Ip
def
= U∗U = diag(1)∞n=1 ∈Mp.

Then one can obtain the following proposition.

Proposition 4.14. Let Mp be the (pure algebraic) algebra consisting of all
Qp-infinite-matrices over Qp. Let Tp = Qp [U,U∗] be in the sense of (4.22). Then
Tp is a (pure algebraic) ∗-subalgebra ofMp over Qp.

The proof is trivial by construction and definition.

Definition 4.15. Define a closed ∗-subalgebra

Tp
def
= Qp[U,U∗]

‖·‖

of the p-adic Banach ∗-algebra Mp. Then it is called the p-adic Toeplitz algebra. All
elements of Tp are said to be p-adic Toeplitz operators.

Proposition 4.16. If T ∈ Tp, if and only if

T =



x0 x−1 x−2 ∗
x1 x0 x−1 x−2

x2 x1 x0 x−1 x−2

x2 x1 x0 x−1
. . .

x2 x1 x0
. . .

∗
. . . . . . . . .


(4.23)
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in Mp over Qp, whenever

T = x0Ip +

∞∑
i=1

xiU
i +

∞∑
j=1

x−jU
∗j .

Proof. Since all elements of Tp are generated by the p-adic unilateral shift U and its
adjoint U∗, the expression (4.23) is shown by the very definition of p-adic Toeplitz
operators, and by Section 4.2.

5. ADELIC OPERATORS ON XQ

In this section, we study operators acting on the adelic Banach space XQ. Recall
that, by (3.16), this Banach space XQ is Banach-space isomorphic to the weak tensor
product Banach space Πϕ

p∈P
Xp of p-adic Banach spaces Xp induced by the system

ϕ = {ϕp}p∈P of p-normalizations ϕp, over the adele ring AQ, i.e., there exists a
Banach space isomorphism Φ: XQ → Πϕ

p∈P
Xp such that

Φ
((

(xp:n)p∈P

)∞
n=1

)
= ((xp:n)∞n=1)p∈P in Πϕ

p∈P
Xp (5.1)

for all ((xp:n)p∈P)
∞
n=1 ∈ XQ.

Define now a setMQ of all AQ-infinite-matrices [Xij ], acting on XQ, with entries
Xij ∈ AQ, i.e.,

[Xij ] = [(xp:ij)p∈P ] .

As in Section 4, the AQ-infinite-matrix setMQ is equipped with matrix addition,
AQ-scalar product, and matrix multiplication as in operator theory.

Define the operator norm ‖ · ‖ on MQ by

‖[Xij ]‖ = sup
{
‖[Xij ] ((Xn)

∞
n=1)‖Q : (Xn)∞n=1 ∈ UQ

}
, (5.2)

where
UQ

def
= {(Xn)∞n=1 ∈ XQ : ‖(Xn)∞n=1‖Q = 1},

where ‖ · ‖Q is the norm on XQ in the sense of (3.13).

Definition 5.1. Let MQ be the operator-norm closure ofMQ. Then we call MQ the
adelic operator set acting on the adelic Banach space XQ (over the adele ring AQ).
All elements of MQ are said to be adelic operators (over AQ).

Then one can have a following proposition.

Proposition 5.2. The adelic operator set MQ is a Banach ∗-algebra over the adele
ring AQ.
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Proof. By the very definition, the adelic operator set MQ is complete under
operator-norm topology inherited from that ofMQ.

Let T1 = [Xij ] and T2 = [Yij ] be in MQ. Then

T1 + T2 = [Xij + Yij ] is in MQ, too,

where the entry-wise addition in right-hand side is in the sense of (2.12). Also, for
any fixed X ∈ AQ and T = [Xij ] ∈MQ,

XT = X[Xij ] = [XXij ] is in MQ,

where the multiplication XXij in the right-hand side is in the sense of (2.13). There-
fore, the adelic operator set MQ is a vector space over a ring AQ, and hence it is a
Banach space over AQ.

Under (2.12) and (2.13),

T1T2 =

[ ∞∑
k=1

XikYkj

]
is in MQ, too.

Furthermore,
T1(T2 + T3) = T1T2 + T1T2,

and
(T1 + T2)T3 = T1T3 + T2T3,

in MQ for all T1, T2, T3 ∈ MQ. It means that the Banach space MQ is a Banach
algebra over AQ.

Define the unary operation (∗), called the adjoint, by

[Xij ]
∗ = [Xji] for all [Xij ] ∈MQ.

Then the adjoint (∗) is well-defined on MQ. Also, it satisfies that

(T ∗)∗ = T for all T ∈MQ, (T1 + T2)∗ = T ∗1 + T ∗2 for all T1, T2 ∈MQ

and
(T1T2)∗ = T ∗2 T

∗
1 for all T1, T2 ∈MQ.

So, MQ is a Banach ∗-algebra over the adele ring AQ.

The above proposition shows that the adelic operator setMQ is a Banach ∗-algebra
over AQ. From now on, we call MQ, the adelic operator algebra (over AQ).

Let us consider detailed structure theorem of the adelic operator algebra MQ.
Let Mp be the p-adic operator algebras over the p-prime fields Qp, for all p ∈ P.

Construct the product (topological) space
∏
p∈PMp of them under the product topol-

ogy of the ‖·‖p-topologies, i.e., the topological space Π
p∈P

Mp, itself, is a Banach space.

Furthermore, it is over the adele ring AQ. Since each direct summand Mp is over Qp,
this Banach space

∏
p∈PMp is over Π

p∈P
Qp. Since AQ ⊂

∏
p∈P Qp, it is over AQ.
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Define now a binary operation (+) on Π
p∈P

Mp by

(Tp)p∈P + (Sp)p∈P
def
= (Tp + Sp)p∈P ,

and another binary operation (·) on it by

((Tp)p∈P) ((Sp)p∈P)
def
= (TpSp)p∈P

for all (Tp)p∈P , (Sp)p∈P ∈
∏
p∈PMp, with a AQ-scalar product,

(xp)p∈P (Tp)p∈P
def
= (xpTp)p∈P

for all (xp)p∈P ∈ AQ.
Then it is not difficult to check that the Banach space Π

p∈P
Mp becomes a Ba-

nach algebra ⊗AQ
p∈P

Mp, which is the tensor product algebra over the adele ring AQ.

Furthermore, one may define the adjoint on Π
p∈P

Mp by

((Tp)p∈P)
∗ def

=
(
T ∗p
)
p∈P

for all (Tp)p∈P ∈ Π
p∈P

Mp.

Proposition 5.3. Let
∏
p∈PMp be the Banach space over the adele ring AQ intro-

duced as above, where Mp are p-adic operator algebras over Qp, for all p ∈ P. Then
it is a Banach ∗-algebra over AQ, and it is Banach-∗-algebra-isomorphic to the tensor
product algebra ⊗AQ

p∈P
Mp over AQ.

Again, notice that the adelic Banach space XQ is Banach-space isomorphic to the
weak tensor product Banach space Πϕ

p∈P
Xp of p-adic Banach spaces Xp, induced by the

system ϕ = {ϕp}p∈P of p-normalizations ϕp.
Thus, one may define a morphism Ω: MQ → ⊗AQ

p∈P
Mp by

Ω ([(xp:ij)p∈P ])
def
= ⊗

p∈P
[xp:ij ] in ⊗AQ

p∈P
Mp (5.3)

for all [(xp:ij)p∈P ] ∈ MQ. This morphism let us have equivalent forms ⊗
p∈P

[xp:ij ],

acting on Π
p∈P
Xp, of

[
(xp:ij)p∈P

]
, acting on XQ.

Define now the functions Θp : Mp →Mp by

Θp ([xij ]) = [ϕp(xij)] for all [xij ] ∈Mp, (5.4)

for all p ∈ P, where ϕp are the p-normalizations in the sense of Section 3.
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Define now the weak tensor product Banach ∗-algebra

⊗Θ
p∈P

Mp

induced by the system Θ = {Θp}p∈P of the functions Θp in the sense of (5.4). Remark
that it is a Banach ∗-subalgebra of ⊗AQ

p∈P
Mp.

Theorem 5.4. Let MQ be the adelic operator algebra, and let M be the weak tensor
product Banach ∗-algebra ⊗Θ

p∈P
Mp of the p-adic operator algebras Mp, induced by the

system Θ = {Θp}p∈P of Θp in the sense of (5.4). Then the Banach ∗-algebras MQ
and M are ∗-isomorphic over AQ, i.e.,

MQ
∗-iso
= ⊗Θ

p∈P
Mp. (5.5)

Proof. We show that the morphism Ω of (5.3) is a ∗-isomorphism from MQ onto
M = ⊗Θ

p∈P
Mp. We already checked at the above paragraphs that this morphism Ω let

us have equivalent forms ⊗
p∈P

[xp:ij ] on Π
p∈P
Xp, of

[
(xp:ij)p∈P

]
on XQ. So, this morphism

Ω let us have equivalent forms ⊗
p∈P

[xp:ij ] on the weak tensor product Banach space

Πϕ
p∈P
Xp, of

[
(xp:ij)p∈P

]
acting on XQ.

One can check that Ω is injective, by the very definition. Also, one may have that
the inverse morphism Ω−1 has its domain M, and hence, Ω is surjective onto ⊗Θ

p∈P
Mp,

too. Therefore,
Ω: MQ →M

is bijective.
Let [(xp:ij)p∈P ], [(yp:ij)p∈P ] ∈MQ. Then

Ω
([

(xp:ij)p∈P

]
+
[
(yp:ij)p∈P

])
= Ω

([
(xp:ij)p∈P + (yp:ij)p∈P

])
=

= Ω
([

(xp:ij + yp:ij)p∈P

])
= ⊗
p∈P

[xp:ij + yp:ij ] =

=

(
⊗
p∈P

[xp:ij ]

)
+

(
⊗
p∈P

[yij ]

)
=

= Ω
([

(xp:ij)p∈P

])
+ Ω

([
(yp:ij)p∈P

])
in M. For all (xp)p∈P ∈ AQ, we have

Ω
(

(xp)p∈P

[
(xp:ij)p∈P

])
= Ω

([
(xp)p∈P (xp:ij)p∈P

])
=

= Ω
([

(xpxp:ij)p∈P

])
= ⊗
p∈P

[xpxp:ij ] =

= (xp)p∈P

(
⊗
p∈P

[xp:ij ]

)
= (xp)p∈P

(
Ω
([

(xp:ij)p∈P

]))
.



60 Ilwoo Cho

Therefore, the morphism Ω is a Banach-space isomorphism over AQ. Moreover,

Ω
([

(xp:ij)p∈P

] [
(yp:ij)p∈P

])
= Ω

([ ∞∑
k=1

(xp:ik)p∈P (yp:kj)p∈P

])
=

= Ω

([ ∞∑
k=1

(xp:ikykj)p∈P

])
= ⊗
p∈P

[ ∞∑
k=1

xp:ikyp:kj

]
=

= ⊗
p∈P

([xp:ij ][yp:ij ]) =

(
⊗
p∈P

[xp:ij ]

)(
⊗
p∈P

[yp:ij ]

)
=

=
(

Ω
([

(xp:ij)p∈P

]))(
Ω
([

(yp:ij)p∈P

]))
.

Therefore, Ω is a Banach-algebra isomorphism over AQ. Also, one can check that

Ω
([

(xp:ij)p∈P

]∗)
= Ω

([
(xp:ji)p∈P

])
= ⊗
p∈P

[xp:ji] = ⊗
p∈P

[xp:ij ]
∗ =

(
⊗
p∈P

[xp:ij ]

)∗
=

=
(

Ω
([

(xp:ij)p∈P

]))∗
.

Since Ω is a ∗-isomorphism, and since XQ and Πϕ
p∈P
Xp are isomorphic Banach spaces,

this morphism Ω is isometric, or norm-preserving. Therefore, two Banach ∗-algebras
MQ and ⊗Θ

p∈P
Mp are isomorphic.

The above theorem characterize the adelic operator algebra MQ acting on the
adelic Banach space XQ in terms of p-adic operator algebras Mp acting on p-adic
Banach spaces Xp, under weak tensor product with product topology.

By the structure theorem (5.5), and by Sections 4.1, 4.2 and 4.3, one may consider
the following adelic operators.

5.1. ADELIC DIAGONAL OPERATORS

Recall that the adelic operator algebra MQ is ∗-isomorphic to the weak tensor product
Banach ∗-algebra M = ⊗Θ

p∈P
Mp of p-adic operator algebras Mp, induced by the system

Θ = {Θp}p∈P of functions Θp on Mp, over the adele ring AQ, by (5.5).
Now, let D(p) = diag(xp:n)∞n=1 be p-adic diagonal operators of Mp for p ∈ P. The

operator
Do = ⊗

p∈P
D(p)

is very well-defined on Πϕ
p∈P
Xp (because each ‖D(p)‖ < ∞), isomorphic to XQ. And

hence, Do is in M. Therefore, by the ∗-isomorphism Ω−1 from M onto MQ, where Ω
is a ∗-isomorphism of (5.3).

One can define an element D by

D = Ω−1 (Do) = diag ((xp:n)p∈P)
∞
n=1 in MQ. (5.6)
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Definition 5.5. The elements D of the adelic operator algebra MQ with their forms
(5.6) are called the adelic diagonal operators on the adelic Banach space XQ.

By (5.6), we obtain the following proposition.

Proposition 5.6. Let D = diag
(

(xp:n)p∈P

)∞
n=1

be an adelic diagonal operator in
MQ with Ω(D) = ⊗

p∈P
D(p) in M. Then

‖D‖ = sup{|(xp:n)∞n=1|p : p ∈ P}. (5.7)

Proof. The proof of (5.7) is straightforward, i.e., if D is given as above, then

‖D‖ = sup{‖D(p)‖p : p ∈ P} = sup{|(xp:n)∞n=1|p : p ∈ P}.

Remember that, in Section 4.1, we showed that ifD(p) is a p-adic diagonal operator
in Mp, then there exists a p-adic diagonal operator Do(p) in Mp such that

‖Do(p)D(p)‖p = 1 (5.8)

for p ∈ P. So, by (5.7), we obtain the following theorem.

Theorem 5.7. Let D be an adelic diagonal operator in MQ. Then there exists an
adelic diagonal operator Do such that ‖DoD‖ = 1.

Proof. Let D be an adelic diagonal operator in MQ. Then it is uniquely equivalent
to an operator ⊕

p∈P
D(p) in the weak direct product Banach ∗-algebra M (over AQ),

where each summand D(p) is a p-adic diagonal operator in Mp. By the existence of
Do(p) satisfying (5.8), there exists an operator ⊕

p∈P
Do(p) in M such that

∥∥∥∥( ⊕
p∈P

Do(p)

)(
⊕
p∈P

D(p)

)∥∥∥∥
⊕

=

∥∥∥∥ ⊕
p∈P

(Do(p)D(p))

∥∥∥∥
⊕

= 1. (5.9)

So, by the Banach ∗-algebra isomorphism Ω, there exists

Do = Ω−1

(
⊕
p∈P

Do(p)

)
in MQ

such that ‖DoD‖ = 1, by (5.9).

5.2. ADELIC WEIGHTED SHIFTS

In this section, we consider weighted shifts of the adelic Banach ∗-algebra MQ. Let Up
be the p-adic unilateral shifts of the p-adic Banach ∗-algebras Mp, for all p ∈ P. Since
MQ is ∗-isomorphic to the weak tensor product Banach ∗-algebra ⊗Θ

p∈P
Mp, induced

by Θ, one can define an element U of MQ by the equivalent form ⊗
p∈P

Up.
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Then the operator U is a well-determined element of MQ, which is expressed by
(0p)p
(1p)p (0p)p

(1p)p (0p)p
. . . . . .

 in MQ, (5.10)

by Ω−1, where
(0p)p = (0, 0, 0, . . .) ∈ AQ

and
(1p)p = (1, 1, 1, . . .) ∈ AQ.

Definition 5.8. Let U be an adelic operator (5.10) in MQ, equivalent to ⊗
p∈P

Up in

⊗Θ
p∈P

Mp. Then it is called the adelic unilateral shift on XQ.

It is not difficult to check that

Ω (Un) = ⊗
p∈P

Unp for all n ∈ N, (5.11)

where Unp are the p-adic n-shifts for all p ∈ P and n ∈ N, and

Ω (U∗) = ⊕
p∈P

U∗p ,

and hence
Ω(U∗ n) = Ω(Un ∗) = ⊕

p∈P
Un∗p (5.12)

for all n ∈ N. The adelic operators Un of (5.11) are called the adelic n-shifts of MQ
for all n ∈ N.

Similar to Section 4.2, if D is an adelic diagonal operator, and if Un is an adelic
n-shift, for n ∈ N, then we define the adelic weighted n-shift UnD in MQ.

Definition 5.9. Let D be an adelic diagonal operator, and let Un be the adelic
n-shift in the adelic Banach ∗-algebra MQ, for n ∈ N. The element UnD of MQ is
called the weighted n-shift on the adelic Banach space XQ for n ∈ N.

Adelic weighted n-shifts are characterized by the following proposition.

Proposition 5.10. Let D = diag ((xp:n)p∈P)
∞
n=1 be an adelic diagonal operator and

let Un be the adelic n-shift of MQ for n ∈ N. Let W = UnD be the corresponding
adelic weighted n-shift in MQ. Then W is equivalent to ⊗

p∈P
UnpDp in ⊗Θ

p∈P
Mp, where

UnpDp are the p-adic weighted n-shift of the p-adic Banach ∗-algebra Mp, in the sense
of Section 4.2, for p ∈ P. In particular,

Dp = diag(xp:n)∞n=1 ∈Mp.
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Proof. Let W = UnD be an adelic weighted n-shift in MQ, for D =
diag((xp:n)p∈P)∞n=1, and n ∈ N. We considered that the adelic n-shift Un is unitarily
equivalent to ⊕

p∈P
Unp in the weak direct product Banach ∗-algebra M = ⊕Θ

p∈P
Mp, where

Up are the p-adic unilateral shifts in the p-adic Banach ∗-algebras Mp. Similarly, the
adelic diagonal operator D is unitarily equivalent to ⊕

p∈P
Dp in M, where Dp are the

p-adic diagonal operators diag(xp:n)∞n=1, by the ∗-isomorphism Ω from MQ onto M.
Therefore,

Ω(W ) = Ω(UnD) =

(
⊕
p∈P

Unp

)(
⊕
p∈P

Dp

)
= ⊕
p∈P

UnpDp,

where UnpDp are the p-adic weighted n-shifts in the sense of Section 4.2, for all
p ∈ P. In particular, if p = ∞ in P, the ∞-unilateral shift U∞ is the usual shift
on R∞(= (Q∞)

∞), and D∞ is a diagonal operator on R∞.

5.3. ADELIC TOEPLITZ OPERATORS

In this section, we introduce adelic Toeplitz operators acting on the adelic Banach
space XQ, contained in the adelic operator algebra MQ. Let U be the adelic unilateral
shift (5.10), satisfying (5.11) and (5.12). Define a (closed) ∗-subalgebra TQ of MQ by

TQ
def
= AQ[U,U∗]

‖·‖
in MQ, (5.13)

where AQ[t1, t2] is the polynomial ring over the adele ring AQ with two AQ-variables t1
and t2 (as in Section 4.3). Then the (pure algebraic) algebra AQ[U, U∗] is a well-defined
(non-closed) ∗-subalgebra of the adelic operator algebraMQ. By completing AQ[U,U∗]
under the operator-norm-topology forMQ, the ∗-algebra TQ of (5.13) becomes a closed
∗-subalgebra of the adelic operator algebra MQ, i.e., it is a Banach ∗-algebra over AQ,
too.

Definition 5.11. The closed ∗-subalgebra TQ (5.13) of MQ is called the adelic
Toeplitz algebra (over the adele ring AQ). And all elements of TQ are said to be
adelic Toeplitz operators on the adelic Banach space XQ.

By the structure theorem (5.5) of MQ, we obtain the following structure theorem
for the adelic Toeplitz algebra TQ.

Theorem 5.12. Let TQ be the adelic Toeplitz algebra over AQ, and let Tp be p-adic
Toeplitz algebras over Qp, for p ∈ P. Then

TQ
∗-iso
= ⊗Θ

p∈P
Tp. (5.14)

Proof. By constructions and definitions, one can determine the ∗-isomorphism Ω0

from the adelic Toeplitz algebra TQ onto the ∗-subalgebra T = ⊗Θ
p∈P

Tp of M = ⊕Θ
p∈P

Mp.

Indeed, if Ω is in the sense of (5.3), then one can get the ∗-isomorphism,

Ω0
def
= Ω |TQ , the restriction of Ω on TQ, (5.15)

is a well-determined ∗-isomorphism from TQ onto T.
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The above characterization (5.14) of the adelic Toeplitz algebra TQ also shows
that the properties of adelic Toeplitz operators are fully determined by those of p-adic
Toeplitz operators. More precisely, one can get the following corollary.

Corollary 5.13. Let T be an adelic Toeplitz operator of the adelic Toeplitz algebra
TQ. Then there exist p-adic Toeplitz operators Tp of p-adic Toeplitz algebras Tp such
that T is equivalent to ⊗

p∈P
Tp in ⊗Θ

p∈P
Tp.
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