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Abstract. In this paper, we study non-Archimedean Banach x-algebras 91, over the p-adic
number fields Qp, and Mg over the adele ring Ag. We call elements of 9, p-adic operators,
for all primes p, respectively, call those of Mg, adelic operators. We characterize g in
terms of M,’s. Based on such a structure theorem of Mg, we introduce some interesting
p-adic operators and adelic operators.
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1. INTRODUCTION

In this paper, we define Banach spaces X, over p-adic number fields (or p-prime
fields) Qp, and the Banach space Xy over the adele ring Ag, and study Banach-space
operators acting on X, and those acting on Xgy, respectively. We call &), and Xy,
the p-prime Banach spaces (over fields Q,) and the adele-ring Banach space (over
a ring Ag), respectively (see Section 3 below).

Matrices acting on Q) and on Ag are considered in [3], and the structures of corre-
sponding matricial algebras have been characterized. Remark here that the matrices
are over Q,,, respectively over Ag.

In this paper, we study the case where n = oo, under certain norm topologies. We
define Banach spaces &, and Xy, consisting of sequences in Q,, respectively, in Ag,
and study Banach-space operators of B(X,) (over Q,), called p-adic operators, and
those of B(Xyp) (over Ag), called adelic operators.

The main purpose of this paper is to study fundamental operator-theoretic prop-
erties of certain p-adic and adelic operators in terms of well-known number-theoretic
results.

© AGH University of Science and Technology Press, Krakow 2014 29



30 Ilwoo Cho

In [3], we consider the relation between the matricial algebra 9, = M, (Ag), and
the matricial algebras M., = M,,(Q,), motivated by [4] and [6]. We provide a way to
study Ag-matrices of 9, in terms of its equivalent forms determined by Q,-matrices
of M,.,. In particular, 9, is a Banach *-algebra, which is isomorphic to the weak
tensor product (in the sense of Section 2.2 below) of M,,.,,’s, for all p € P, i.e.,

*-1S0
mn = Qe 9)/tn:pa
pEP

induced by a system © = {O,},ep of certain morphisms
Op: My = My, forall peP,

where
P {00} U {all primes}.

In [5], we compute spectra of Q,-matrices of 9M,,.,,, and those of Ag-matrices of
M,,. In particular, we showed that the Ag-spectrum of an Ag-matrix A is computed
by the Q,-spectra of Q,-matrices A,, since

equivalent

A= [@pishpep] = A @ 4y,

nxn peP

where
Ap = [(2piij)],, ., forall peP.

One may have a similar structure theorem for our case where n = oo, under
suitable topologies.

Analysis on p-adic number fields @, and that on the adele ring Ag is not only
interesting, but also important in various mathematical fields and other scientific
areas. In particular, p-adic analysis have been used for studying (non-Archimedean)
structures with “small” distance (e.g., [1,3,4, 14] and [6]). adelic analysis on Ag is
dictated by p-adic analysis by the very definition-and-construction of Ag. Recall that
the adele ring Ag is a weak direct product of prime fields {Q,},ep, i.e., in our sense (of

Section 2.2), it is the weak tensor product II, Q, induced by the system g = {gp }pep
peP
of the surjective functions g, from Q, onto its unit disks Z,, traditionally denoted by

Ag =TI
Q pGPQ7

i.e.,, analysis on @Q, and Ag provides new paradigms and tools for studying
non-Archimedean geometry of structures with small distances (e.g., [14]).

Mainly, the prime fields Q,, and the adele ring Ag are playing key roles in modern
number theory, connected with analytic number theory and algebraic geometry (e.g.,
[6,9,10] and [15]). Recently, the author and Gillespie have shown that they are
also closely related to operator algebraic structures via free probability (e.g., see [1]
through [6]).
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After submission, the author realized that there is a series of recent research of
Kochubei, considering non-Archimedean operator theory (see [17-19] and [20]). In
those papers, Kochubei study certain operators on non-Archimedean normed spaces,
and define non-Archimedean version of normality, unitarity and shifting of operators.

Different from Kochubei’s universal approach, here, we consider operators on
non-Archimedean normed spaces as forms of infinite matrices, based on the author’s
recent interests; connecting number theory with operator theory; concentrated on
p-adic analysis, adelic analysis (e.g., [1-3] and [6]), and free probability on arithmetic
functions (e.g., [4,5,7] and [8]), purely motivated by modern number theory. In partic-
ular, the non-Archimedean normed spaces {X},}p:primes and Xg in this paper are con-
structed directly from p-adic number fields {Qy} p:primes, respectively, the adele ring
Ag. The fundamental reason to handle such specific non-Archimedean normed spaces;
{Xp }p:primes, Xg; is to connect modern number-theoretic objects-and-results to oper-
ator theory via possible operator-algebraic tools, including representation theory and
free probability, and vice versa.

In this paper, we focus on establishing backgrounds of such a study. One may/can
apply these backgrounds to more deeper and developed researches to connect number
theory and operator theory.

2. DEFINITIONS AND BACKGROUNDS

In this section, we introduce basic definitions and backgrounds of our study.

2.1. THE ADELE RING Ag

Fundamental theorem of arithmetic says that every positive integer in the integer Z
except 1 can be expressed as a usual multiplication of primes (or prime numbers),
equivalently, all positive integers which are not 1 are prime-factorized under multipli-
cation. And hence, all negative integers n, except —1, can be understood as products
of —1 and prime-factorizations of |n|. Thus, primes are playing key roles in both
classical and advanced number theory.

The adele ring Ag is one of the main topics in advanced number theory connected
with other mathematical fields like algebraic geometry and L-function theory, etc.
Throughout this paper, we denote the set of all natural numbers (which are positive
integers) by N, and the set of all rational numbers by Q.

Let us fix a prime p. Define the p-norm |- |, on Q by

a
T*
Py

def 1
P pr

lalp =

whenever ¢ = p"¢ € Q* = Q) {0}, for some 7 € Z, with an additional identity:

0], “ly (for all primes p).
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For example,

240 s (2 2Lt

’_52_ ( 5)2 258
and ) )

— — 73. 71—7:

‘24 |27% 371 55 =&

It is easy to check that:

(i) lg], >0 for all ¢ € Q,
(il) |q1g2l, = la1l, - |g2l, for all g1, g2 € Q,
(i) |q1 + gol, < max{|q],, |g2[,} for all g1, ¢2 € Q.

In particular, by (iii), we verify that
(it)” [g1 + g2l, < la1l, + lgz], for all g1, g2 € Q.

Thus, by (i), (ii) and (iii)’ the p-norm | - |, is indeed a norm. However, by

(iii), this

norm is “non-Archimedean”. Thus, the pair (Q, |- |,) forms a normed space, for each

prime p.

Definition 2.1. We define sets QQ, by the p-norm-closures of the normed spaces
(Q, |- |p), for all primes p. We call it the p-prime field (or the p-adic number field).

For a fixed prime p, all elements of the p-prime field Q, are formed by

oo
p" (Z akpk> for 0<ay <p,
k=0

for all r € Z, where aj, € Ny “INU {0}. For example,

~1=(p-1p"+@-p+@-1)p*+....

The subset Z,, of Q, is the set consisting of all elements formed by
Zakpk for 0<ap<p in Ny
k=0

So, by definition, for any = € Q,, there exist r € Z, and zy € Z,, such that
x=p"xp.
Notice that if = € Z,,, then |z|, < 1, and vice versa, i.e.,

Zy={xecQ,: |z|, <1}

(2.1)

(2.2)

The subset Z,, of (2.2) is said to be the unit disk of Q,, for all primes p. Remark

that
Zp D ply DP°ZLy DD°Zp D ...y
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since if x € p* Z,, then |z|, < X for all k € N, where aY means {ay: y € Y} for all
a € Qp, and for all subsets Y’ of Qp. Similarly, one can verify that

Z,Cp 'Z,Cp 2, Cp 3L, C...,
and hence

Qp = U p*Z,, set-theoretically. (2.3)
k=—oc0

Consider the boundary U, of Z,. By construction, the boundary U, of Z, is iden-
tical to
Up=Zp,\pZy,={x €Z,: |z|, =1}. (2.4)

Similarly, the subsets p*U, are the boundaries of p*Z,, satisfying
pkUp = kap \pk“Zp for all k€ Z.

We call the subset U, of Z,, in (2.4) the unit circle of Q,, and all elements of U,, are
said to be units of Q,.
Therefore, by (2.3) and (2.4), one obtains that

o0
Q= |_| pkUp7 set-theoretically, (2.5)

k=—oc0
where LI means the disjoint union.

Fact 2.2 ([14]). The p-prime field Q, is a Banach space and it is locally compact. In
particular, the unit disk Z, is compact in Q.

Define now the addition on Q,, by
( > anp”> + ( > bnp"> = >, cnp” (2.6)
n=—N; n=—Ny n=—max{Ni,Na}
for N1, Ny € N, where the summands ¢, p™ satisfies that

def (an + bn)pn if a, +b, <p,

e .

Cnpn = pn+1 if ap, + by, = D,
snanrl +rpp" if ay 4 by = spp+ 1,

for all n € {—max{Ny, Na},...,0,1,2,...}.
Next, define the multiplication of two units “in Q,” by

<Z aklpk1> (Z bk2pk2> = Z Cnpna (27)
k1=0 ko=0 n=—N

where

. -c -c -c
e = > (Phykatho ks + Sk 1ka Ty 1oy T Skuska— 105y oy 1 Sky— Lo 105, 1, k1) »
k1+ko=n
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where
Ak, bkz = Sky,koP T Tky kas

by the division algorithm, and

‘ 1 if Ay bkz <Dp;
i =
k1,k2 0 otherwise,

and
e . .
Zk’l,kg =1- Yk ko

for all k1, ke € Ny. So, “on Q,”, the multiplication is well-defined by

< Z amp’“) ( Z kapIm) _
ki=—N1 ko=—Ns
=@ ™) ™) (Z aklNlpk1> (Z blclszk2> :

k1=0 ko=0

(2.8)

Then, under the addition (2.6) and the multiplication (2.8), the algebraic triple
(Qp, +, ) becomes a field for all primes p. Thus the p-prime fields Q,, are algebraically
fields.

Fact 2.3. Every p-prime field Q, with the binary operations (2.6) and (2.8) is a field.

Moreover, the Banach filed Q, is also a (unbounded) Haar-measure space
(Qp,0(Qp), pp), for all primes p, where o(Q,) means the o-algebra of Q,, consisting
of all measurable subsets of QQ,. Moreover, this measure p, satisfies that

) 1
oo (@ +9'Zp) = pp (02) = 7 =

(2.9)
=p(0°2;) = p(a+Z5)
for all a € Q, and k € Z, where Z) = Z, \ {0}. Also, one has
ppla+Uy) = pp (Up) = pp (Zp \ L) =
1
= pp (Zp) — pp (PZyp) =1 — 5
for all a € Q. Similarly, we obtain that
b & 1 1
Pp (a +p Up) =0r (p Up) = F - pFH (2.10)

for all @ € Q and k € Z (see Chapter IV of [14]).

Fact 2.4. The Banach field Q, is an unbounded Haar-measure space, where py,
satisfies (2.9) and (2.10), for all primes p.



p-adic Banach space operators and adelic Banach space operators 35

The above three facts show that Q, is a unbounded Haar-measured, locally com-
pact Banach field, for all primes p.

Definition 2.5. Let P = {all primes} U {oc}. The adele ring Ag = (Ag,+,) is
defined by the set

{(zp)pep: zp € Qp, almost all z,, € Z,, for p € P}, (2.11)

with identification Qo = R, and Z,, = [0, 1], the closed unit interval in R, equipped
with the product topology of {Q,}pep, and with the product measure p = X pp,

peP
and with operations
(@p)p + (Yp)p = (2p + Yp)p (2.12)
and
(p)p(Up)p = (TpYp)p (2.13)

for all (zp)p, (Yp)p € Ag-

Indeed, the algebraic structure Ag is a ring. Also, under the product topology,
the adele ring Ag is also a locally compact Banach space having its measure.
Set-theoretically,

AgcJ[@=rx| [] @
peP p:prime
In fact, by the very definition of Aq, it is a weak direct product H;D Qp of prime
pe

fields {Q,}pep, i.e.,
’
AQ = H va

peEP
where H/ means the weak direct product, i.e., if
(xocn T2,X3,T5,TL7,T11,- - ) S AQv

then most of x, are contained in the unit disks Z,, but only finitely many z, are
in Qg, for p, g € P.
The product measure p = X p, of the adele ring Ag is well-defined on the
peEP

o-algebra o(Ag), with identification po, = pr, the usual distance-measure on R = Q.

Fact 2.6. The adele ring Ag is an unbounded-measured locally compact Banach ring.

2.2. WEAK TENSOR PRODUCT STRUCTURES

Let X; be arbitrary sets, for i € A, where A means any countable index set. Let

be well-defined functions for all 7 € A.
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Now, let X be the Cartesian product 'HA X; of {X;}iea. Define the subset X of X
1€
by

X = {(xi)i €eX ’ (2.15)

determined by a system g = {g; }ica of (2.14). We denote this subset X by

X = HgXi.

i€EA

finitely many x; € X;, and
almost of all z; € ¢;(X;) ’

It is clear that X is a subset of X, by the very definition (2.15). If g; are bijections
for all ¢ € A, then X is equipotent (or bijective) to X. However, in general, X' is a
subset of X.

Definition 2.7. The subset X = II; X; of X = 'HAX“ in the sense of (2.15), is
icA €

called the weak tensor product set of {X;};ca induced by a system g = {g;}iea of

functions g;.

Let Q, be p-prime fields, for all p € P. Define a function

gp: Qp—”@p

9p <pN(§ajpj)> = g‘)ajpj (2.16)

for all p~ & Z;io ajp’ € Q, (with N € NU{0}), for all p € P. Then the image g, (Q,)
is identical to the compact subset Z,, the unit disk of Q,, for all p € P. Therefore,
the adele ring Ag = lg;) Q, is identified with

P

Ao =] @

peEP

in the sense of (2.15), where g = {g, }pep is the system of functions g, of (2.16).
Remark here that, for example, if we have real number r in R = Q,, with its
decimal notation
‘T| = Ztk . 10_k =... t_Qt_lto.tthtg .o
kez

with 0 <?; <10 in N, then
goo(’l“) = O.t1t2t3 ceey (2.17)

with identification goo(+1) = 1. Traditionally, we simply write Ag = H;) Q, as before
pe

if there is no confusion.
Remark also that X;’s of (2.14) and (2.15) may/can be algebraic structures (e.g.,
semigroups, or groups, or monoids, or groupoids, or vector spaces, etc.), or topological
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spaces (e.g., Hilbert spaces, or Banach spaces, etc.). One may put product topology on
the weak tensor product, with continuity on {g; };ca. Similarly, if X;’s are topological
algebras (e.g., Banach algebras, or C*-algebras, or von Neumann algebras, etc.), then
we may have suitable product topology, with bounded (or continuous) linearity on
{gi}ien-

In topological-x-algebraic case, to distinguish with other situations, we use the
notation ®g¢, instead of using Ilg, for any system @ of functions.

i€A €A
Remark 2.8. Let X; be algebras (or topological algebras, or topological *-algebras
etc.), for i € A. Then the weak tensor product ®¢ induced by a system & becomes
€A
a conditional sub-structure of the usual tensor product ®¢, whenever functions in
€A
the system ® are algebraic (resp., continuous-algebraic, resp., continuous-*-algebraic)
homomorphisms. In such a case, our weak tensor product algebras (resp., topolog-
ical algebras, or topological x-algebras) are subalgebras (resp., topological subalge-
bras, resp., topological x-subalgebras) of the usual tensor product algebras (resp.,
topological algebras, resp., topological x-algebras), i.e., ®¢X; are well-determined
€A
sub-structures of ®cX;, whenever functions ®; in ® preserve the structures of X;’s
€A

to those of ®;(X;) for all i € A.

3. BANACH SPACES X, AND Xy

In this section, we define normed spaces where our operators act. Over prime fields
Qyp, we introduce Banach spaces &), for all primes p, and similarly, over the adele ring
Ag, we define a Banach space Xj.

3.1. BANACH SPACES X, OVER Q,

Recall that, in [3] and [5], we defined n-products Qj of Q, for n € N. Here, Q} is the
Cartesian product of n-copies of Q, as a set. So, all elements of Q) have their forms,
n-tuples of p-adic numbers. By defining a norm | - |,., on Qp
def .
|(z1, ..., xn)|p:n = max{|xj|p cj=1,...,n},

for all (zy, ..., v,) € Qp, one can understand Q) as a normed space. Moreover, it is
a Banach space because QQ,, is a Banach space.

We are interested only in the case where n = co.

Define now a set X, by a collection of all Q,-sequences, i.e.,

X, ™ {(@0)22,: 20 € Q, for all n € N}. (3.1)

The set X, of (3.1) is identical to Qp° (briefly mentioned in [3]) as “sets”. Define
a vector addition on X, by

(@n)pet + (Un)per = (Tn + Yn)nia (3.2)
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for all (,)0%:, (Yn)5%; € Xp, where z,, + y,, of the right-hand side of (3.2) is in the
sense of (2.6).
Also, define a Q,-scalar multiplication on X, by

x(ajn)?zozl = (TTn)peq (3-3)

for all z € Q,, and (x,)5%; € X, where zz,, of the right-hand side of (3.3) is in the
sense of (2.8).

Proposition 3.1. The set X, of (3.1) is a well-defined vector space over a field Q,
equipped with (3.2) and (3.3).

From now on, we understand X, as a vector space over a field Q,,.
Define now a norm || - ||, on the vector space X, by

0o def .
[@n)nzill, = sup{la;], - j € N} (3.4)

for all (2,)5%; € X,.

Proposition 3.2. Let X, be the vector space (3.1) over Q,, and let || - ||, be a
morphism (3.4). Then it is a well-defined norm on X,,, i.e., (Xp, || - ||p) is a normed
space over Q,. Moreover, this norm || - ||, is non-Archimedean in the sense that

llev+ Bllp < max{allp, 18]}

for all a, f € X,,.

Proof. Let X, be given as above, and | - ||, be as in (3.4). By definition,
lafl, >0 forall o€ X, (3.5)

Now, let z € Qp, and a = (2,)72; € Xp. If [, = [2o|,, for some
Zo € {x1,22,...} (by (3.4)), then

leall, = le,|, =

= (™" 8:) (7" Bs,)

= [p™Nep N (BoBa,)

p P

whenever x = p~ N+ 3, and z, = p~Nee B, , with N, N, € NU{0}, and B, Bz, € Z,
(see Section 2.1)

No+No, _

- ‘p_(N‘nJ’_N‘EO)(/Bﬂ?ﬂZo) :p

= (") (p"0) = Izl lzol, = 2l 1 (@n)oZll, = 121, el

and hence
lzallp, = |zlpllall, forall z€@Q, and «€ X,. (3.6)



p-adic Banach space operators and adelic Banach space operators 39

Now, let o = (2,)5%1, 8= (yn)5%; € Xp. Then

lee+ B, = [I(@n + yn)nZall, =
=sup{lz; +y;|,: j €N} =
= [To + Yol, < (for some o € N)
< max{fzo, lyol, } <

by the non-Archimedean property of | - |,

< max{]|elp, |8, },
ie.,
e+ Bll, < max{llallp, [|B]lp} forall «,f € X, (3.7)
Therefore, by (3.7), one can obtain that

la+Bll, < llallp +118]l, forall a5 € X, (3.8)

Therefore, by (3.5), (3.6) and (3.8), the morphism || - ||, is a well-defined norm
on X,,. Also, by (3.7), this norm is non-Archimedean. Equivalently, the pair (X, ||-||,)
is a normed space over a field Q. O

By the above proposition, the pair (X, ||-||,) is a non-Archimedean normed vector
space over the p-prime field Q,. We denote this pair simply by X,,.

Definition 3.3. Let X, be a normed vector space as above. Under the || - ||,-norm
topology, let X}, be the completion of X,,. We call X}, the p-adic Banach space over Q,,.

3.2. A BANACH SPACE Xy OVER Ag

Similar to Section 3.1, we define a set X by a set of all Ag-sequences over the adele
ring Ag, i.e.,

Xo def {(an)p2q: an € Ag for all n € N}.

Define now a vector addition on Xg by
(an)zozl + (bn)’rolo:1 = (an + bn)zozl (3.9)

for all (an)52q, (bn)5%; € Xq, where a,, + b,, in the right-hand side of (3.9) is in the
sense of (2.12) for all n € N.
Also, define a scalar multiplication by

alan)pzy = (aan)pz, (3.10)

for all @ € Ag and (a,)52, € Xg, where the entries aa, in the right-hand side of
(3.10) is in the sense of (2.13).
The operations (3.9) and (3.10) are well-defined in Xg.



40 Ilwoo Cho

Proposition 3.4. The set Xq, equipped with (3.9) and (3.10), is a vector space over
a ring Ag.
From now on, we understand Xg as a vector space over Ag.

Recall that as a weak direct product H;D Q, (equivalently, the weak tensor product
JUS

II, Q, in the sense of Section 2.1) of prime fields Q,, the adele ring Ag has its norm
pEP

|- lo: Ag — Ry,
def
(@p)perlg = [ lel, forall (z,)pep € Ag, (3.11)
pEP

with identity: |2 |, = |Zoo|, the absolute value of z, for all o € Qu = R.
Remark that, since almost of all entries x4 of (x,),ep € Ag are contained in Z,,
for ¢ € P,
|[(zp)perlg < .

Furthermore, one can have

[(@p)per + (Up)perlg = [(@p + Yp)perlg =

= H |mp+yp‘p =

peEP
= |Too + Yool + H |zp + Ypl, < (3.12)
p:prime
< |Zoo| + Yool + H maX{|xp|p ) |yp|p} <
p:prime

by the non-Archimedean property of | - |,, for all primes p

< H |$p|p + H ‘yp‘p = ‘(mp)peﬂc@ + |(yp)pEP|Q
pEP peEP

for all (zp)per, (Yp)pepr € Ag. So, indeed, the morphism (3.11) is a well-defined norm
on Ag, satisfying (3.12).
Now, define a morphism || - [lg: Xg — R{ on Xg by

def .
l(an)nZilly = sup{lajlg : j € N} (3.13)

for all (a,,)%; € Xg, where Rf = {r € R: r > 0}.

Proposition 3.5. The vector space Xg equipped with the morphism || - ||q of (3.13)
s a normed space over a ring Ag.

Proof. By definition, it is clear that

lallg >0 forall ae€ Xg.
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Now, let a = (zp)pep € Ag and a = ((@n:p)pep)r, € Xo. If
lalle = [(Zop)peply for some o€ N
in RY U {co}, then one can have that

lacllg = [|((@p)per) (@np)per)oryllg =

= |’((ffp)pep($n;p)pep)f:1||Q -
B H (upx”*’)pep)

= sup {‘(Ipxn;p)pe'p‘(@ in € N} =

oo

n:lHQ

sup H |ZpTnipl, :n ENp =
pEP

sup H |Zpl, [Tnipl, i m ENp =

pEP
= H |p |, [To:pl, = (for some o € N)
peEP
= H |xp‘p H |x0:p|p
peEP pEP

by (2.13)
= lalg llallg -
So, for a € Ag and a € Xg,
laallg = lalg llallg -
Also, with help of (3.12), one can obtain

la+Bllg < llallg + 1Bllg  forall «,B € Xq.
Indeed, if & = ((@n:p)pep)rey > and B = ((Yn:p)per) ., in Xg, then

||04 + BHQ = H((xn:p)PEP + (yn:p)pE’I’)Zo:lHQ =

= (@t wmer) [, =
= sup {|(xn:p + yn:p)pe'P‘Q ne N} =
= [(Zop + Yop)perlg < (for some o € N)

< |(550:p)p€73|@ + |(yo:p)p€7?|@ < (by (3.12))
< llallg + 118llg -

Therefore, the pair (Xg, || - ||g) is & normed space over a ring Ag. O
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The above proposition shows that the vector space Xg with | - ||g is a normed
space over the adele ring Ag.

Definition 3.6. Let Xp be the || - ||g-norm-topology completion of the normed
space Xq. We call X the adelic Banach space over Ag.

3.3. BANACH SPACES Ay AND X,
Construct a topological product vector space X = le_[P A&, of p-adic Banach spaces
P

X, equipped with the norm

def
I(wp)perlly = TT llvpll, (3.14)
pEP

where || - ||, are in the sense of (3.4), for all p € P. It is not difficult to check that
this vector space X is over the adele ring Ag. Indeed, since each p-adic Banach space
X, is over Q,, for p € P, the space X is over HPQP (containing H;)Qp). Thus, X is
pEe pE
over Ag.
Naturally, we have the vector addition

(Up)pep + (wp)pEP = (Up + wp)pe’P on X

for all (vp)pep, (Wp)pep € X, and the Ag-scalar product

(tp)per (vp)per = (tpvp)pep on X

for all (t,)per € Ag and (vp)pep € X.

In the rest of this section, understand X as a normed vector space with its norm
I llo of (3.14).

Recall now functions g, on Q, as in (2.16) and (2.17), for all p € P, i.e.,

(o] (o]
_ def
9p (p MO aw")) = anp”
n=0 n=0

for all p=N (3°0° j anp™) € Qp, with N € NU {0}, and 0 < a,, < p.
Then they are kind of normalization maps, compressing elements of Q, to those
of Zy, the unit disks of Q,. We call g, the p-normalizations on Q, for all p € P.
Define now a function ¢,: &, — A&}, on the p-adic Banach space &}, by

op (@)521) < (gp(@a)), (3.15)

for all (z,)p2, € A,, for all p € P. The functions ¢, are well-defined continuous
function on &, for all p € P.
Notice however that each ¢, is “not” Q,-linear, because

Pp ((xn)?f’:l + (ynﬁf:l) =©p ((zn + yn)ﬁ’oﬂ) = (gp(wn + yn))::;l
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and
gp(xn + yn) # gp(:L‘n) + gp(yn);
in general, for n € N. For example, let

o =p 2 4p P42 4"+ 0 p+ P+ .,

and
Yn=p 2 4+p 4+ +p+p+p3+...

in Qp, for some n € N. If p = 3, then

93(Zn + yn) = g3 (p‘3 +2p72 4B T+ 2% p 4 2p? +2p3+...) -
93 (p*3+2p’2++p+2p2+2p3+...) —
3<p’3+2p*2++p+2p2+2p3+...> =

g
g3 (P P+ 20 +B+p+2p* + 20 +..) =
g3 (p73+2p72+2p+2p2+2p3+~~) =
2p+2p2+2p3+...,

but
_ (.0 2 3 0 2 3 _
93(xn) F 9p(Yn) = (" +0-p+p " +p° +-- )+ +p+p  +p° +...) =
=2 +p+2p2 +2p3 +2p 4 ...

So, in general, g, are not Q,-linear, and hence ¢, are “not” Q,-linear, i.e.,

ep (Zn)nzr + (Yn)nZr) 7 p (n)nZe) + @p ((Yn)nZn)

in general. However, it is a well-defined (topological continuous) function on the topo-
logical space &,.
These functions ¢, satisfy that

llep (@n)sZll, = l[(gp(@n))niyll, =
= sup{|gp(xn)|p 'n € N} <1

for all (z,,)p2 € &, for p € P, i.e., this map is understood as a normalization on X,
for p € P.

Definition 3.7. We call the functions ¢, of (3.14) the p-normalization on the
p-adic Banach space &, for all p € P. Also, we denote the system {p,},ep of
p-normalizations simply by ¢.

Let X = [[,cp &) be given as above, equipped with its norm || - |g in the sense
of (3.14). As a “subset” of X, define X, by

; vp € A&, for finitely many p,
X, lef (vp)pep € X and all other a, are ) (3.16)
contained in ¢, (X,)
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ie., X, is the weak tensor product II, &, of {X,},cp, induced by the system ¢ =

pEP
{¢p}pep of p-normalizations ¢, (3.15) on A,. Under the inherited operations and
norm, also denoted by || - ||, from X, this set X, is a normed vector space over the

adele ring Aq, too.

Definition 3.8. Let X, be the normed space (3.16) over Ag. Denote the
|| - ||g-norm-topology closure of X, by X.

The following proposition is the summary of the above discussion.

Proposition 3.9. The weak tensor product space X = 1, X, of X = HPX,, 5 a
peEP pe
Banach space over the adele ring Ag.

We now show the adelic Banach space &g is Banach-space isomorphic to the
weak tensor product Banach space X of p-adic Banach spaces {X},},cp induced by
¢ = {¢p}pep of p-normalizations.

Theorem 3.10. Let Xy be the adelic Banach space over the adele ring Ag, and let

X be the weak tensor product Banach space I, X, of p-adic Banach spaces {Xp}pep,
pEP
induced by the system ¢ = {p,}pep of p-normalizations ¢, (3.15) on X,. Then Xy

and X are Banach-space isomorphic over Aq, i.e.,

Banach
Xo == Hq)xp, (3.17)
peEP

«Banach,,

where means “being Banach-space isomorphic”.

Proof. Define now a morphism

[OF XQ — X
by the function satisfying
e def oo .
P (((xnlp)pep>n:1) = H ((mn:p)nzl) in X (318)
pEP

for all ((2n:p)per)rey = 1 (@np)per € Xg. In other notations,
o def o]
o (((mn:p)pgfp)nzl) = ((xn:p)n=1)p€p :

Then it is a well-defined “injective” map from the adelic Banach space Xy to the
weak direct product Banach space X.
Similarly, define a morphism

\D:%—)XQ
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by
v (((x”:p)zo:l)pep) o (((xn:p)p@)oo ) in &g (3.19)

n=1

for all ((xn:p):ozl)p cp € X. Then one can verify that ¥ is a well-defined injective map,

too. Especially, the well-definedness of ¥ is guaranteed by the weak tensor product
structure of X. By the injectivity and (3.19), we have

Pl =,

i.e., the morphism @ of (3.18) is a bijective function from Xg onto X, with its inverse ¥.
Now, let ((xn:p)pep)zc:1 ) ((yn:p)pep)zozl € Xg. Then
@ (((xn:p)pep)zozl + ((yn:p)pep)zo:J =

- (((:cnp + yn:p)peP> Oo:1> -

n

= H ((xnil) + ynip)zozl) = ((‘rn:p + yn:p)zozl)pep -
peEP
= pl;!; ((mn:;ﬂ)%ozl) + (pIEIP ((yn:p)f—l)) -

=9 (((xn:p)pEP)Zo:1) +@ (((yn:p)pep)zo:1) .

Thus, we obtain that
P(a+ph)=2(a)+P(B) in X (3.20)

for all a, 8 € Xp.
Also, let (ap)pep € Ag, and let ((Zn:p)per)r, € Xo. Then

P (((ap)pep) (((xn:p)pep)zo=1)) = (((apxn:p)pep)zo=1> =
I (@pznp)ie, =

peEP

_ (pgpa,,) [ )it | =

peEP
= ((ap)pep) (2 ((@np)per)ny)) -

and hence
®(ae) =a®(a) in X% (3.21)

for all @ € Ag and o € Ap.
Thus, by (3.20) and (3.21), this bijective map ® is a Ag-vector-space isomorphism.
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Also, one can check that

[ (@ndoer )22 s = ||(@un)in)pen]| =
where || - || is the norm (3.14) on X
— T @)l
pEP
where || - ||, means the X,-norm in the sense of (3.4)

=TI (supllenyl, s m e )) <

peEP

< H |xop;p|p = (for some o, € N, for p € P)
peEP

where ||, is the Q,-norm in the sense of Section 2.1

= ‘(xop:p)p€P|Q =

where ||y is the Ag-norm (3.11)

— H((l‘n;p)pGP)ZO:IHQ’

where || - ||g is the norm (3.13) on the adelic Banach space Xg. So,

H‘b (((wn:p)pep)le)H® < H ((Zn:p)peP) e 1HQ

So, this Ag-vector-space isomorphism ® is bounded. Similarly, one can find that

% ((@nsp)per)nei) llg < H Tnip)pe 1)p€pH®

Since ¥ = ®~!, we obtain that

o () ), = Wil

Therefore, the Ag-vector-space isomorphism @ is isometric. And hence, this morphism
® is a Banach-space isomorphism, equivalently, the Banach spaces Xp and X are
isomorphic over Ag. O

The above characterization (3.17) shows that our adelic Banach space Xp is

Banach-space isomorphic to the weak tensor product Banach space IL, X, of p-adic
peEP
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Banach spaces X}, induced by the system ¢ = {¢,},ep of p-normalizations ¢,. In
particular, one has an isometric isomorphism

@ ((@rher) ) = (@un)i)yer 0 TL 4%

n
peEP

(o]
for all <(xn¢1’)pe7>) € Xo.
n=
In the rest of this paper, we use Ap and Il, &}, alternatively, as same Banach

peP
spaces.

Also, by (3.17), if we define an operator T" acting on the Banach space Xy, then

one may understand 7" as an (equivalent form of) operator acting on II, X}, over Ag.
peP
We will consider it in the following sections.

4. p-ADIC OPERATORS ON X,

In this section, we study p-adic operators acting on &}, for primes p. Throughout
this section, let’s fix a prime p, and let &}, be the corresponding p-adic Banach space
consisting of all Qp-sequences (x,)5%; over the p-prime field Q,.
As we have seen in Section 3.1, the p-adic Banach space is well-defined Banach
space X, equipped with its norm || - ||,, satisfying
[(@n)nzall, = sup{|znl, : n € N} (4.1)

for all (x,)5%; € X,. Define the unit ball B, of X,, and the unit circle U, of X, by

By = {(#n)nzr € Xt [[(@n)nZall, < 1} (4.2)

and
d&f

Uy = {(@n)nZs € s [[(@n)nZall, = 13-

Lemma 4.1. Let B, and U, be in the sense of (4.2), for a prime p. Then:
(xn)pry € By in X, if and only if x,, € Zy, in Q, for alln € N. (4.3)

(@n)pey €Uy in Xy, (4.4)
if and only if

(i) (zn)nZ: € By, and
(ii) there exists at least one entry x, in (Tn)ory such that x, € Uy, in Q.

Proof. The proof of (4.3) is by the very definition (4.1) of AX},-norm ||-||,,. If we assume
that there exists at least one j in N such that x; = p~Naq, with “N € N, in (z,,)% 4,
(equivalently, if x; € Q, \ Z,), then

Il = lagl, =V > 1.
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Conversely, if all entries z; of (2,)72, are in Z,, then |[(z,)5Z,[[, < 1, since
|zn|, < 1foralln € N.

So, the statement (4.3) holds.

Now, suppose (2,)5%; € U,, and assume that either a condition (i) or (ii) does not
hold. First, suppose (2,)52; € X, \ Bp. Then, by the proof of (4.3), ||(x,)5%, || > 1.
It contradicts our assumption that (z,)5>; € U,. Now, suppose there does not exist
entry x, in (x,)52, € By, such that x,, € U,. This means that all entries of (z,)52,
are contained in kap, for some k € N, i.e.,

1 1
[(@n)nzall, < P <1 for some k€N,

and hence (z,)52; ¢ U,. It contradicts our assumption.
Conversely, an element (z,,)22; of X, satisfies both conditions (i) and (ii). Then

l(zn)nZall, = sup{|znl, : n € N} = |ao|, =1,

where z, € U, in (2,)52; for some o € N. Therefore, the statement (4.4) holds. O

Consider certain operators (continuous or bounded Q,-linear transformations) act-
ing on &,.

Define naturally (co x 00)-Q,-matrices T' by the rectangular arrays of p-adic num-
bers,

d t .
T = [Zij]ooxoo enore [IU] with T € Qp.

Denote the collection of all such Q-matrices by M,,.

On M,, define the Qp-matrix addition, Qp-scalar multiplication, and the
Qp-matrix multiplication just like in operator theory. Then M, becomes an (pure
algebraic) algebra over Q.

Act T = [z;5] € M), on &, by the rule:

T (n)i) = o) (@) = (Dea) ™ (45)
j=1

where the addition ) and the multiplication z;;z; at the far right-side of (4.5) are
in the sense of (2.6), and (2.8), respectively.
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Then, the Q,-matrices of M,, are Q,-linear transformations on X&}. Indeed, if
T = [x;;] in My, then

T ((@n)pzr + (Yn)nZe) = T (T + yn)nls) =

— 1] (@ + 9)0) = (ixij(mj ) =

j=1 =1

= (i(%‘j%’ +$ijyj)>oo =

j=1 =1
oo oo

= (Z{I,’Z'jxj + Zwijyj)
j=1 j=1
oo o0 o0

= (Z%%) T (Z%‘yﬁ)
j=1 i=1 j=1

=T ((@n)nz1) + T ((yn)nZ1)

for all (2,)521, (Yn)52; € &p. Thus, we have

o0
=
o0

=1

T(a+p8)=T(a)+T(B) foral «,f€X,. (4.6)

Also, for z € Q, and (z,)52, € &),

T (2(zp)nz1) =T ((xn)nzy) = [zi;] ((@2n)52,) = (i%l‘%)w -
:@§%@: > )

So, we get that
T (za) =2T(a) forall ze€QpacX,. (4.7)

Therefore, by (4.6) and (4.7), one obtains the following lemma.

Lemma 4.2. The Qp-algebra M,, of all Q,-infinite-matrices is realized on the p-adic
Banach space X, with its representation (4.5).

However, the continuity (or boundedness) of elements of M), is not guaranteed.
Like in operator theory, define the operator-norm || - || on M, by
def
IT]= sup{[[T(a)llp: [lallp = 1}- (4.8)
By (4.2), one can re-define the operator-norm || - || of (4.8) by

1T < sup{||IT(@)]p: @ € Uy}. (4.9)

Remark here that the norm || - || of (4.8) is unbounded in general on M,. So, we
construct the maximal subalgebra 9, of M, where || - || is complete on 9,,.
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Definition 4.3. Let M, be the Qp-algebra of Q,-infinite-matrices, acting on the
p-adic Banach space X),. Let || - || be the operator norm (4.8) or (4.9) on M,,. Let
9, be the maximal subalgebra of M, (consisting of Q,-infinite-matrices), where || - ||
is complete on 9M,. All elements of 91, are called p-adic operators. We call 9, the
p-adic operator algebra (on the p-adic Banach space X},).

The following theorem characterizes an operator-algebraic property of the p-adic
operator algebra 91,,.

Theorem 4.4. Let M, be the p-adic operator algebra on the p-adic Banach space X,.
Then M, is a Banach x-algebra over the p-prime field Q,.

Proof. Recall that 9, is the || - ||,-norm completion of an (pure algebraic) algebra
M,, of all infinite-Q,-matrices acting on X}, over QQ,. Thus, it is a Banach algebra
over Q, acting on A),.

Define now a unary operation (x) by

[23,]* < (2] for all [wy] € M, (4.10)

Then the operation (4.10) satisfies
([2ig]")" = [2i]" = [w5] for all [zy5] € M. (4.11)
Also, it holds
(i) + i)™ = [y +yis]" = i + yze] = ] + [yj] = [wig]” + [wig]" (4.12)

and

([zijllyis])" = [Z xikykj]
k=1

for all [x;5], [yi;] € M,,.

So, by (4.11), (4.12) and (4.13), the p-adic operator algebra 9, is a Banach
algebra equipped with adjoint (x) of (4.10). Equivalently, 9, is a Banach x-algebra
over Q. O

ij

= [Z yjk:xki‘| = [ysillzja] = [yi;|"[zs5]"  (4.13)
k=1

The above theorem shows that our p-adic operators are elements of the Banach
x-algebra 901, over the p-prime field Q, for all primes p.

4.1. p-ADIC DIAGONAL OPERATORS

As a starting point, we consider diagonal operators in the p-adic operator algebra 91,
acting on the p-adic Banach space &,. Remark that T' € 9, if and only if ||T|| < oo.
Assume a p-adic operator D has its form

X1 0

)
D= T3 €M, with =z €Q,.
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We call such operators D, p-adic diagonal operators. Denote D by diag(z,)52,
whenever one wants to emphasize the diagonal entries.

Proposition 4.5. Let D = diag(z,)32, be a p-adic diagonal operator in M,. Then
DIl = [l(zn)nzs ll, - (4.14)

Proof. Observe that

ID]} = sup{[[D((yn)nZi)ll, + (Wn)nZa € Up} = sup{[[(@nyn)nZall, = (yn)ny € Up} =

= sup {sup{|xnyn|p i (Yn)piq € Up} = sup {sup{|xn|p in € N}} =
by (4.3) and (4.4)

= sup{|zal, 1 n € N} = [[(za)5%1 ], -

Therefore, we have

[diag(zn)nZill = [[(@n)nZll, -
O
Now, consider a special type of p-adic diagonal operators of 9,. Let D, =
diag(p)s, be a p-adic diagonal operator of M, i.e.,
p
p
with 1
1,11 = @], = o], = -
By Section 2.1, the p-prime field Q, has an embedded lattice
. CPp*Zy CpZy CZL, Cp 'Zy Cp?ZyC.... (4.15)

If z € Qp, then there exists N € N U {0}, and z¢ € Z,, such that

z=p N e p_NZp.

So, the element pr makes

N+

pr=p Ntz € p_N'HZp.

So, the p-adic diagonal operator D, acts like a shift (or a shift operator) on the
filtering (4.15).

Lemma 4.6. Let D), be a p-adic diagonal operator diag(p)p>, in the p-adic operator

algebra M,,. If (v,)5, € X,, with x,, € p~nZ, for N, € NU {0}, for all n € N,
then the image (y,)3%, = D, ((2,)32,) satisfies that y, € p~N+17Z,, for all n € N.
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Similar to D,,, one can define p-adic diagonal operators
Dy = diag(p*);2, in M, forall keN. (4.16)
It is trivial that the p-adic operators D, of (4.16) satisfy that
Dy =Dy in M, forall keN.

Then, by the modification of the above lemma, we obtain the following corollary.

Corollary 4.7. Let D,x be a p-adic diagonal operator in the sense of (4.16) in the
p-adic Banach algebra M,,. If (x,)52, € X, with z, € p~""Z, for N, € NU{0}, for
all n € N, then the image (y,)32, = D, ((x,)S2,) satisfies that y, € p~N2T*Z, for
alln € N,

By the above lemma and corollary, we obtain the following theorem, which provides
a normalization process among the p-adic diagonal operators.

Theorem 4.8. Let D = diag(x,)$2, be an arbitrary p-adic diagonal operator in
IMy. Then there erist k € N and the corresponding p-adic diagonal operator D,k in
the sense of (4.16) such that || D, D|| = 1.

Proof. Let D = diag(z,)52; be a p-adic diagonal operator in 9t,. Then, by (4.14),
we have

1D} = l[(zn)nZill, = sup{|zal, - 2n € Qp},
and assume there exists z, in (x,)5%; € &, such that

|D|| = |zol, = p™ for some n, € Z.

Assume that N, € Z such that N, +n, = 0, in Z, i.e., N, = —n,. Define the p-adic
diagonal operator D,,~, as in (4.16). Then

Dyno D = diag(p™ew,)s2, in My,
with pNex, € Z,, by the above theorem. Hence,
D, D] =1

O

The above theorem shows that every p-adic diagonal operator D in the p-adic
operator algebra 91, is normalized to a certain p-adic diagonal operator Dy, with
[ Dol| = 1.

4.2. p-ADIC WEIGHTED SHIFTS

As a continuation for studying some nice examples for p-adic operators of the p-adic
Banach algebra 91,,, acting on the p-adic Banach space &), we introduce natural shifts
(or shift operators) like in the usual operator theory (e.g., [16]).
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Consider a function U: &), — &, defined by
U((z1,22,...)) = (0,z1,22,...) in A, (4.17)

for all (z,,)5%, € &,. Then, as in [16], such an operator U is expressed by a p-adic
operator
0 0
1 0
10 in 9M,.
1 0
0

Definition 4.9. We call the p-adic operator U of 9, in the sense of (4.17), the
p-adic (unilateral) shift.

Clearly, the p-adic operator U™ = U...U of the p-adic shift U, satisfies that:
—
n-times

U™ (a1, 22,...)) = (0,...,0,331,3;2,...), (4.18)

n-times

on X, for all (z,)22, € &), for all n € N. We say the p-adic operator U™ are the
p-adic n-shifts, for all n € N. By definition, the p-adic 1-shift is nothing but the p-adic
shift U of (4.17).

It is not difficult to check that

[U*|=1 forall neN,

because

HU"((xn);le)Hp _ H (o, ........ 0, 21,20, )Hp = 1)y I

n-times
for all (z,)52; € &p.
Proposition 4.10. If U™ are the p-adic n-shifts, then
|U"| =1 forall neN. (4.19)

Let U* be the adjoint of the p-adic unilateral shift U. Then it has its Q,-matricial
form

0 1 0
0 1
0 1
in M,
0
0
i.e., it satisfies
U* ((z1,72, 73,24, -..)) = (T2, 23,74, ...)

on X, for all (z,)02, € &,.
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Proposition 4.11. Let U™ be the p-adic n-shift. Then
umu" = diag(1,1,1,...)

and
Urynt = diag(o,...,o,1,1,1, )
SN——
n-times

for allm € N.

Let D be a p-adic diagonal operator diag(z,)52; in 91, and let U be the p-adic
unilateral shift. Then the product UD is equivalent to

0 0
T 0
z2 0 in 9. (4.20)
I3 0
0

Definition 4.12. The above new p-adic operator UD of (4.20) is called the p-adic
weighted shift with weights (x,,)5%; in 9t,. The p-adic operators U™D are called the
p-adic weighted n-shifts, for all n € N.

With help of (4.14) and (4.19), we obtain the following operator-norm computa-
tion. It is a p-adic version of the usual weighted-shift-norm computation (e.g., [16]).

Proposition 4.13. Let W = U"D be a p-adic weighted n-shift in M, for n € N,
where U™ is the p-adic n-shift and D = diag(z,)32, be a p-adic diagonal operator.
Then

W = [l(zn)aZall, - (4.21)
Proof. By definition, if W = U"D is a p-adic weighted n-shift, where D =
diag(z,)5, in M, then

IW I = sup {IW ()l ()7s €Uy } =

= sup {H (O, ey 0, Y1, T2Y2, .- )H S (Yn)peq € Z/lp} =
N—— P
n-times
= sup { )il * ()7 € Uy} = @)l = 1D,
by (4.14). O

4.3. p-ADIC TOEPLITZ OPERATORS

Let U be the p-adic unilateral shift in the sense of (4.17) in the p-adic Banach algebra
M, acting on the p-adic Banach space &), for a fixed prime p. Now, we are interested
in the Banach *-subalgebra

T = Qp[Ua U*]
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of M,,, where Q,[U, U*] is a module over {U, U*} in the following sense, and where

Y mean the || - |l-operator-norm closures of all subsets Y of 9t,,.
Define first a polynomial ring Qp[t1,t2] with two Qp-variables (or two
Qp-indeterminents) t1 and ty over the p-prime field Q, by

xp € Qp for all k,
and for all nq,ny € N

ni na
def . .
Qp[tl,tQ] ; $0+Z$jtj1 +Z£L’1té
j=1 i=1

Then it is a well-defined algebraic ring over a field Q,. Construct the module
Qp [U,U*] by
QI) [U7 U*} = {f(Uv U*) f(tlatQ) € Qp[t17t2]}7 (422)

ie., if T'e Q,[U,U*], then
n1 ) no )
T = xolp + Zl‘jUj + ZIlU“
j=1 i=1

for some nq, ny € N, where z, € Q,, with identity:

L, Y UrU = diag(1)>2, € M,
Then one can obtain the following proposition.

Proposition 4.14. Let M, be the (pure algebraic) algebra consisting of all
Qy-infinite-matrices over Q. Let T, = Q, [U,U*| be in the sense of (4.22). Then
Tp is a (pure algebraic) *-subalgebra of M, over Q.

The proof is trivial by construction and definition.
Definition 4.15. Define a closed *-subalgebra

%, Y QU

of the p-adic Banach *-algebra 9,. Then it is called the p-adic Toeplitz algebra. All
elements of T, are said to be p-adic Toeplitz operators.
Proposition 4.16. If T € %, if and only if

g X—_1 X_2 *

1 Xo r—_1 T_9
Tro T Zo r—_1 T_9

T= T2 X1 xo Tr_1 . (423)

X2 X1 Zo
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in M, over Qp,, whenever
T=uxolp+ Y xU + Y a ;U9
i=1 j=1

Proof. Since all elements of T, are generated by the p-adic unilateral shift U and its
adjoint U*, the expression (4.23) is shown by the very definition of p-adic Toeplitz
operators, and by Section 4.2. O

5. ADELIC OPERATORS ON Xy

In this section, we study operators acting on the adelic Banach space Xgp. Recall
that, by (3.16), this Banach space Xy is Banach-space isomorphic to the weak tensor
product Banach space II, X, of p-adic Banach spaces &) induced by the system

peEP
¢ = {¢p}pep of p-normalizations ¢,, over the adele ring Ag, i.e., there exists a
Banach space isomorphism ®: Xg — I, A}, such that
peP
@ ((@nn)yep) )= (@pn)iZpep i Mo, (5.1)
n= pEP

for all ((zpm)per),—, € Xo-.
Define now a set Mg of all Ag-infinite-matrices [X;;], acting on Xg, with entries
Xij S AQ, i.e.,
[Xij) = (@p:i)per]

As in Section 4, the Ag-infinite-matrix set Mg is equipped with matrix addition,
Ag-scalar product, and matrix multiplication as in operator theory.

Define the operator norm | - || on Mg by
X351 = sup {1X55] (X))l = (X3 € U (52)
where
def o 0o
Uy = {(Xn)pZs € Aot [[(Xn)plillg =1}
where || - ||g is the norm on Xy in the sense of (3.13).

Definition 5.1. Let Mg be the operator-norm closure of Mg. Then we call Mg the
adelic operator set acting on the adelic Banach space Xy (over the adele ring Ag).
All elements of Mg are said to be adelic operators (over Ag).

Then one can have a following proposition.

Proposition 5.2. The adelic operator set Mg is a Banach *x-algebra over the adele
ring Ag.
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Proof. By the very definition, the adelic operator set g is complete under
operator-norm topology inherited from that of Mg.
Let Ty = [X;;] and T5 = [Y;;] be in Mg. Then

T1 + T2 = [Xij + }/”} is in 93?@, tOO,

where the entry-wise addition in right-hand side is in the sense of (2.12). Also, for
any fixed X € Ag and T = [X;;] € Mg,

where the multiplication X X;; in the right-hand side is in the sense of (2.13). There-
fore, the adelic operator set Mg is a vector space over a ring Ag, and hence it is a

Banach space over Ag.
Under (2.12) and (2.13),

T\Ty = |y XipYij| s in Mg, too.
k=1
Furthermore,
T (To + T3) = Th T2 + Th T,
and

(Th +T5)T3 = Th T + 15 T3,

in Mg for all Th, T, Tz € Mg. It means that the Banach space Mg is a Banach
algebra over Ag.
Define the unary operation (*), called the adjoint, by

(X" =[Xj] forall [X;;] € Myg.
Then the adjoint (x) is well-defined on Mg. Also, it satisfies that
(T*)*=T forall Te Mg, (T1+T2)" =Ty +Ty forall T1,Ts € Mg
and
(T\To)* =Ty Ty for all Ty, Ts € My.
So, Mg is a Banach x-algebra over the adele ring Ag. O

The above proposition shows that the adelic operator set g is a Banach *-algebra
over Ag. From now on, we call Mg, the adelic operator algebra (over Ag).

Let us consider detailed structure theorem of the adelic operator algebra Mg.

Let M, be the p-adic operator algebras over the p-prime fields Q,, for all p € P.
Construct the product (topological) space HpeP M, of them under the product topol-
ogy of the || - ||,-topologies, i.e., the topological space plgpsmp, itself, is a Banach space.

Furthermore, it is over the adele ring Ag. Since each direct summand 90, is over Q,,
this Banach space [[,.» M, is over plE'IPQp. Since Ag C [[,ep Qp, it is over Ag.
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Define now a binary operation (+) on Hpi)ﬁp by
pe

de
(Typ)per + (Sp)per = (Tp + Sp)peps

and another binary operation (-) on it by

(Ty)per) ((Sp)per) E (T,5,),cp

for all (T},)pep, (Sp)pep € [1,ep My, with a Ag-scalar product,

def
(:Cp)pep (Tp)pep = (IPTP)pGP
for all (z,)pepr € Ag.
Then it is not difficult to check that the Banach space Hpimp becomes a Ba-
pe

nach algebra ®a,9M,, which is the tensor product algebra over the adele ring Ag.
pEP
Furthermore, one may define the adjoint on szmp by
pe

* def *
((TP)PE'P) = (Tp)pep
for all (T, II .
or all (T)per € pepmp

Proposition 5.3. Let HpeP M, be the Banach space over the adele ring Ag intro-
duced as above, where M, are p-adic operator algebras over Qp, for all p € P. Then
it is a Banach *-algebra over Ag, and it is Banach-x-algebra-isomorphic to the tensor
product algebra @p,M, over Ag.
peP
Again, notice that the adelic Banach space X is Banach-space isomorphic to the

weak tensor product Banach space II, &), of p-adic Banach spaces X),, induced by the
peP
system ¢ = {¢, }pep of p-normalizations ,,.
Thus, one may define a morphism : Mg — @4,M, by

peEP
def .
Q([(zpiijper]) = @ [zpij] I ®ag M, (5.3)
PEP pEP
for all [(zp.ij)per] € Mg. This morphism let us have equivalent forms ® [zp. ],
pEP
acting on ple_[PXp, of {(J:p;ij)pep] , acting on Xj.
Define now the functions ©,: 9, — M, by
Op ([zi5]) = lep(wiz)]  for all - [zi;] € My, (5.4)

for all p € P, where ¢, are the p-normalizations in the sense of Section 3.
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Define now the weak tensor product Banach *-algebra

®C—) mp
peEP

induced by the system © = {©,},¢p of the functions ©,, in the sense of (5.4). Remark

that it is a Banach *-subalgebra of @,,9M1,.
peEP

Theorem 5.4. Let Mg be the adelic operator algebra, and let M be the weak tensor
product Banach x-algebra ®@9ﬁ of the p-adic operator algebras M, induced by the

system © = {Op,},ep of ®p in the sense of (5.4). Then the Banach *-algebras Mg
and M are x-isomorphic over Ag, i.e.,

Mo = @M, (5.5)
peP

Proof. We show that the morphism Q of (5.3) is a *-isomorphism from Mg onto

M = ReM,. We already checked at the above paragraphs that this morphism §2 let
peEP

us have equivalent forms ® [zp.;] on II &), of [(a:p:ij) GP} on Xgp. So, this morphism
pEP PEP P

Q2 let us have equivalent forms & [zp.;;] on the weak tensor product Banach space
pEP

H%Xp, of |:(xp:ij)p€77:| acting on Ap.
pe
One can check that €2 is injective, by the very definition. Also, one may have that

the inverse morphism Q7! has its domain 9, and hence, (2 is surjective onto ®e M,
peEP
too. Therefore,

O: f)ﬁQ — M
is bijective.
Let [(zp.ij)pep], [(Yp:ij)per] € Mq. Then

Q ({(%:ij)pe»p] + [(yp:ij)pepD =Q ([(%nj)pep + (yp:z‘j)pepD =

=0 (|:(xp:ij + yp:ij)pep]) = pg) [Tp:ij + Ypas) =

- (pgp[x,,:ijo + (pg)[wﬂ) =
_Q ({(mp:ij)pePD +Q ({(yp:ij)pePD

in M. For all (z,)pep € Ag, we have
Q(@phper [@nin)yep|) = 2 ([@lrer @pis)yep| ) =

=0 <[(mp$p:ij)pe1>]) =% [Tp2pis] =

= (xp)peP <p‘§73[$p:ij]> = (xp)peP (Q ([(%}:i]’);;é?})) :
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Therefore, the morphism €2 is a Banach-space isomorphism over Ag. Moreover,

Q (I:(.’L'p;ij)pep} {(ypiij)pep}> ( P ) -
Q( i xpzkyk])pep ) :peP Zl'plkypk]‘| —

B P?p([xp5ij][yp:ij]) - (pgp hp:ij]) (P(?P[yp:ij]) )

= (@ ([tzwayer])) (@ ([Griher] )

Therefore, 2 is a Banach-algebra isomorphism over Ag. Also, one can check that

Q ([(wp:ij)pepr) = ([(mp:ﬁ)pepb = ® [Tpji] = p?P[pr:ij]* = ( ® [mp:z'j]>* =

oo

Z Tp: zk)pe'p (Upikj )pep

pEP pEP

- (@(([ener)))”

Since (2 is a *-isomorphism, and since Xp and 1I, &}, are isomorphic Banach spaces,

peP
this morphism € is isometric, or norm-preserving. Therefore, two Banach *-algebras
Mo and ®eM,, are isomorphic. O
peEP

The above theorem characterize the adelic operator algebra Mg acting on the
adelic Banach space Xy in terms of p-adic operator algebras 90, acting on p-adic
Banach spaces X),, under weak tensor product with product topology.

By the structure theorem (5.5), and by Sections 4.1, 4.2 and 4.3, one may consider
the following adelic operators.

5.1. ADELIC DIAGONAL OPERATORS

Recall that the adelic operator algebra Mg is *-isomorphic to the weak tensor product

Banach x-algebra 9 = ®¢ M, of p-adic operator algebras M,,, induced by the system
peEP

© = {0, }pecp of functions ©, on M,,, over the adele ring Ag, by (5.5).

Now, let D(p) = diag(zp.n)52; be p-adic diagonal operators of M, for p € P. The
operator

Do = ® D(p)
peEP
is very well-defined on II, &), (because each ||D(p)| < oo), isomorphic to Xp. And
pEP

hence, D, is in M. Therefore, by the *-isomorphism Q! from 9 onto Mg, where Q
is a #-isomorphism of (5.3).

One can define an element D by

D = Q" (D,) = diag ((Zpm)pep)pe, in Mg. (5.6)
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Definition 5.5. The elements D of the adelic operator algebra Mg with their forms
(5.6) are called the adelic diagonal operators on the adelic Banach space Xp.

By (5.6), we obtain the following proposition.

Proposition 5.6. Let D = diag ((xpm)pep) be an adelic diagonal operator in
n=1
Mg with QD) = @ D(p) in M. Then
pEP

DIl = sup{|(zp:n)nzil, : p € P} (5.7)
Proof. The proof of (5.7) is straightforward, i.e., if D is given as above, then
ID[| = sup{[[D(p)ll,, : p € P} = sup{|(zpin)nzsl, : » € P} O

Remember that, in Section 4.1, we showed that if D(p) is a p-adic diagonal operator
in <M, then there exists a p-adic diagonal operator D,(p) in 9, such that

Do (p)D(p)ll, = 1 (5.8)
for p € P. So, by (5.7), we obtain the following theorem.

Theorem 5.7. Let D be an adelic diagonal operator in Mg. Then there exists an
adelic diagonal operator D, such that | D,D|| = 1.

Proof. Let D be an adelic diagonal operator in Mg. Then it is uniquely equivalent
to an operator @ D(p) in the weak direct product Banach x-algebra 9t (over Ag),
pEP

where each summand D(p) is a p-adic diagonal operator in 9t,. By the existence of
D,(p) satisfying (5.8), there exists an operator @ D,(p) in 9 such that
peEP

|(2,00) (g,00)| =] o, @0pen| =1 69
peP peEP ® peP ®
So, by the Banach x-algebra isomorphism €2, there exists
D,=Q7! ( @ Do(p)> in Mo
peEP
such that ||D,D|| = 1, by (5.9). O

5.2. ADELIC WEIGHTED SHIFTS

In this section, we consider weighted shifts of the adelic Banach *-algebra M. Let U,

be the p-adic unilateral shifts of the p-adic Banach *-algebras 91, for all p € P. Since

Mg is *-isomorphic to the weak tensor product Banach x*-algebra ®egMM,, induced
peEP

by ©, one can define an element U of Mg by the equivalent form & U,.
peEP
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Then the operator U is a well-determined element of Mg, which is expressed by

(0p)p
(1) |
(Ip)p  (0p)p in My, (5.10)

by Q~', where
(OP)P = (Oa Oa 0; . ) € A@

and
(110)1) = (la 1) 17 . ) € AQ

Definition 5.8. Let U be an adelic operator (5.10) in Mg, equivalent to ® U, in

pEP
®eM,. Then it is called the adelic unilateral shift on Aj.
peEP
It is not difficult to check that
QU")= @ U, forall neN, (5.11)
peEP
where U} are the p-adic n-shifts for all p € P and n € N, and
QU= o U,
( ) peEP P
and hence
QuU*") =QU"") = & Uy” (5.12)
pEP

for all n € N. The adelic operators U™ of (5.11) are called the adelic n-shifts of Mg
for all n € N.

Similar to Section 4.2, if D is an adelic diagonal operator, and if U™ is an adelic
n-shift, for n € N, then we define the adelic weighted n-shift U™ D in Mg.

Definition 5.9. Let D be an adelic diagonal operator, and let U™ be the adelic
n-shift in the adelic Banach x-algebra Mg, for n € N. The element U"D of My is
called the weighted n-shift on the adelic Banach space X for n € N.

Adelic weighted n-shifts are characterized by the following proposition.

Proposition 5.10. Let D = diag ((xpn)pep),—, be an adelic diagonal operator and
let U™ be the adelic n-shift of Mg for n € N. Let W = U"D be the corresponding

adelic weighted n-shift in Mg. Then W is equivalent to @ UJD, in @My, where
pEP pEP

Uy D, are the p-adic weighted n-shift of the p-adic Banach *-algebra M,,, in the sense
of Section 4.2, for p € P. In particular,

-Dp = diag(xp:n);:oZI € mp'
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Proof. Let W = U"D be an adelic weighted n-shift in Mg, for D =
diag((xp:n)pepr)ozy, and n € N. We considered that the adelic n-shift U™ is unitarily

equivalent to @ U}’ in the weak direct product Banach x-algebra 9 = ©g M, where
peP peEP
U, are the p-adic unilateral shifts in the p-adic Banach *-algebras 9t,,. Similarly, the

adelic diagonal operator D is unitarily equivalent to @& D, in 9, where D, are the
peEP
p-adic diagonal operators diag(zp., )52, by the x-isomorphism € from Mg onto M.

Therefore,
QW)=QU"D) = ur D, | = U'pD,,
W ( ) (pg’ p) <p§97’ p) pEBP pop
where Uy'D,, are the p-adic weighted n-shifts in the sense of Section 4.2, for all
p € P. In particular, if p = oo in P, the oo-unilateral shift U,, is the usual shift
on R®(= (Qx)™), and Dy, is a diagonal operator on R*. O

5.3. ADELIC TOEPLITZ OPERATORS

In this section, we introduce adelic Toeplitz operators acting on the adelic Banach
space Xgp, contained in the adelic operator algebra Mig. Let U be the adelic unilateral
shift (5.10), satisfying (5.11) and (5.12). Define a (closed) *-subalgebra Tq of Mg by

T Y AU U] in Mg, (5.13)

where Ag[t1, t2] is the polynomial ring over the adele ring Ag with two Ag-variables t1
and to (as in Section 4.3). Then the (pure algebraic) algebra Ag[U, U*] is a well-defined
(non-closed) *-subalgebra of the adelic operator algebra Mg. By completing Ag[U, U*]
under the operator-norm-topology for Mg, the x-algebra Tg of (5.13) becomes a closed
x-subalgebra of the adelic operator algebra Mg, i.e., it is a Banach x-algebra over Ag,
too.

Definition 5.11. The closed #-subalgebra Tg (5.13) of Mg is called the adelic
Toeplitz algebra (over the adele ring Ag). And all elements of Tg are said to be
adelic Toeplitz operators on the adelic Banach space Xg.

By the structure theorem (5.5) of Mg, we obtain the following structure theorem
for the adelic Toeplitz algebra Tg.

Theorem 5.12. Let Tg be the adelic Toeplitz algebra over Ag, and let T, be p-adic
Toeplitz algebras over Qp, for p € P. Then

To "2 06T, (5.14)
peEP
Proof. By constructions and definitions, one can determine the -isomorphism 2

from the adelic Toeplitz algebra Tg onto the *-subalgebra T = ®g ¥, of M = B M,,.
peP peP

Indeed, if © is in the sense of (5.3), then one can get the x-isomorphism,

O def |y, the restriction of Q on Tg, (5.15)

is a well-determined *-isomorphism from g onto ¥. O
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The above characterization (5.14) of the adelic Toeplitz algebra Tg also shows
that the properties of adelic Toeplitz operators are fully determined by those of p-adic
Toeplitz operators. More precisely, one can get the following corollary.

Corollary 5.13. Let T be an adelic Toeplitz operator of the adelic Toeplitz algebra
Tq. Then there exist p-adic Toeplitz operators T,, of p-adic Toeplitz algebras T, such

that T is equivalent to ® T, in ®eTp.
pEP pEP
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