PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chance constraint programming problems with parameters as exponential random variable

Autorzy
Identyfikatory
Warianty tytułu
PL
Sprowadzanie zadań programowanie z losowymi ograniczeniami do ograniczeń z rozkładem wykładniczymi
Języki publikacji
EN
Abstrakty
EN
Robust decision making under uncertainty is deemed to be a crucial factor in many disciplines and application areas. In addition, management and measurement of risk is an important issue in almost all areas that require decisions to be made under uncertain information. Chance constrained programming (CCP) has been used for modelling and analysis of risks in a number of application domains. This paper presents a deterministic reduction of a linear and nonlinear chance constraint programming problem using simple mathematical and statistical tools, assuming the coefficients of the decision variables in the chance constraints as exponential random variables. After converting the proposed chance constraint programming problem into a deterministic problem, a standard generic package is used to find the compromise solution and a comparison with some other techniques is considered. Then MATLAB programming code is used to verify the validity of solution for the original chance constraints.
PL
Podejmowanie decyzji w warunkach niepewności jest kluczowym czynnikiem wpływającym na efektywność i opłacalność projektów w wielu dyscyplinach badawczych i działalności gospodarczej. W związku z tym, zarządzanie i pomiar ryzyka są ważną kwestią w prawie wszystkich obszarach, które wymagają podejmowania decyzji na podstawie niepewnych informacji. Programowanie ograniczone szansą (CCP) zostało wykorzystane do modelowania i analizy ryzyka w wielu dziedzinach aplikhttps://www.overleaf.com/project/5ff6f9808edae84a1313f60bacji. W artykule przedstawiono deterministyczną redukcję liniowego i nieliniowego problemu programowania z ograniczeniami losowymi z wykorzystaniem prostych narzędzi. Po przekształceniu proponowanego problemu programowania z ograniczeniami losowymi w problem deterministyczny, do dalszej analizy i wyznaczenia rozwiązania używane są standardowe metody optymalizacji. W pracy podano także porównania przy zastosowaniu innych, niż standardowe metod. Rezultaty porównano z rozwiązaniami wyjściowych problem, bez przekształcania, otrzymanych procedurami zaimplementowanymi w MATLAB.
Rocznik
Strony
15--30
Opis fizyczny
Bibliogr. 39 poz., fot., tab., wykr.
Twórcy
  • Adamas University, Department of Mathematics, School of Basic and Applied Sciences, Barasat, Kolkata, West Bengal, Zip - 700126, India
Bibliografia
  • [1] K. Balakrishnan and A. P. Basu, editors. Exponential Distribution: Theory, Methods and Applications, page 664 p. CRC Press. Taylor and Francis, Group, Boca Rato, London, New York, 1996. ISBN 9780367448660. Cited on p. 17.
  • [2] E. M. L. Beale. On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc., Ser. B, 17 (2): 173-184, 1955. ISSN 0035-9246. doi: 10.1111/j.2517-6161.1955.tb00191.x. MR 0089101; Zbl 0068.13701. Cited on p. 15.
  • [3] A. Ben-Tal and A. Nemirovski. Robust optimization methodology and applications. Mathematical Programming, 92 (3): 453-480, 2002. Cited on p. 15.
  • [4] M. Biswal, N. Biswal, and D. Li. Probabilistic linear programming problems with exponential random variables: A technical note. European Journal of Operational Research, 111: 589-597, 1998. Cited on pp. 17, 22, 23, and 25. References.
  • [5] M. Branda, J. Novotn, and A. Olstad. Fixed interval scheduling under uncertainty - a tabu search algorithm for an extended robust coloring formulation. Computers and Industrial Engineering, 95: 45-54, 2016. Cited on p. 16.
  • [6] A. Charnes and W. Cooper. Chance constrained programming. Management Science, 6: 227-243, 1959. doi: http://dx.doi.org/10.1287/mnsc.6.1.73. Cited on pp. 15 and 16. References.
  • [7] B. Contini. A stochastic programming approach to goal programming. Operations Research, 16: 576-586, 1978. Cited on p. 16.
  • [8] G. Dantzig. Chance constrained programming. Management Science, 1 (3-4):197-206, 1955. doi: http://dx.doi.org/10.1287/mnsc.6.1.73. Cited on p. 15.
  • [9] M. Dempster and G. Consigli. The CALM stochastic programming model for dynamic asset-liability management. In J. M. Mulvey and W. Ziemba, editors, World Wide Asset and Liability Modelling, pages 464-500. Cambridge University Press, Cambridge, 1998. Editors: J. M. Mulvey and W. T. Ziemba, pages 464-500. Cited on p. 16.
  • [10] M. Dempster, N. Pedron, E. Medova, J. Scott, and A. Sembos. Planning logistic operations in the oil industry. Journal of Operational Research Society, 51 (11): 1271-1288, 2000. Cited on p. 16.
  • [11] C. Dert. Asset liability management for pension funds: A multistage chance constrained programming approach. PhD thesis, Erasmus University, Rotterdam, The Netherlands, 1995. Cited on p. 16.
  • [12] S. E. Elmaghraby, H. Soewandi, and M. J. Yao. Chance-constrained programming in activity networks: A critical evaluation. European Journal of Operational Research, 131: 440-458, 2001. Cited on p. 16.
  • [13] G. Eppen, R. Martin, and L. Schrage. A scenario approach to capacity planning. Operational Research, 37 (4): 517-525, 1989. Cited on p. 16.
  • [14] L. Ghaoui and H. Lebret. Robust solutions to least-square problems with uncertain data matrices. SIAM Journal of Matrix Analysis and Application, 18: 1035-1064, 1997. Cited on p. 15.
  • [15] A. Goicoechea, D. Hansen, and L. Duckstein. Multiobjective decision analysis with Engineering and Business Applications. Wiley, 1982. Cited on p. 16.
  • [16] M. Ierapetritou, J. Acevedo, and E. Pistikopoulos. An optimization approach for process engineering problems under uncertainty. Computers and Chemical Engineering, 20: 703-709, 1996. Cited on p. 16.
  • [17] N. S. Kambo. Mathematical Programming Techniques. Affiliated East-West Press Pvt. Ltd., 1984. Cited on p. 16.
  • [18] A. Kampas and B. White. Probabilistic programming for nitrate pollution control: comparing different probabilistic constraint approximations. Europian Journal of Operational Research, 147: 217-228, 2003. Cited on p. 16.
  • [19] V. Kolbin. Stochastic Programming. D. Reidel Publishing Company, Boston, 1977. Cited on p. 16.
  • [20] G. Laporte, F. Louveaux, and L. Hamme. Exact solution to a location problem with stochastic demands. Transportation Science, 28: 95-103, 1994. Cited on p. 16.
  • [21] J. Leclercq. Stochastic programming: An interactive multi-criteria approach. European Journal of Operational Research, 10: 33-41, 1982. Cited on p. 16.
  • [22] S. MirHassani, C. Lucas, G. Mitra, E. Messina, and C. Poojari. Computational solution of capacity planning models under uncertainty. Parallel Computing, 26: 511-538, 2000. Cited on p. 16.
  • [23] F. Murphy, S. Sen, and A. Soyster. Electric utility capacity expansion planning with uncertain load forecasts. AIIE Transaction, 14: 52-59, 1982. Cited on p. 15.
  • [24] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained programs. SIAM J. Optim., 17 (4): 969-996, 2006. ISSN 1052-6234. doi: 10.1137/050622328. Cited on p. 16.
  • [25] J. Robinson. Loaded questions: New approaches to utility forecasting. Energy Policy, 16 (1): 58-68, 1988. Cited on p. 16.
  • [26] V. Sarkar, K. Chaudhuri, and R. Mukherjee. Second degree chance constraints with lognormal random variables - an application to fisher's discriminant function for separation of populations. American Journal of Computational and Applied Mathematics, 3 (3): 186-194, 2013. doi: 10.5923/j.ajcam.20130303.06. Cited on p. 16.
  • [27] V. Sarkar, K. Chaudhuri, and R. Mukherjee. Chance constraint problem having parameters as pareto random variables. Advances in Inequalities and Applications, 2016 (5), 2016. Cited on p. 16.
  • [28] V. Sarkar, K. Chaudhuri, and R. Mukherjee. Chance constraint problem having parameters as pareto random variables. Journal of Mathematical and Computational Science, 6 (4): 653-667, 2016. URL http://scik.org/index.php/jmcs/article/view/2527. Cited on p. 16.
  • [29] S. Sen, R. Doverspike, and S. Cosares. Network planning with random demand. Telecommunication Systems, 3: 11-30, 1994. Cited on p. 16.
  • [30] J. Smith. Optimizing platform survivability using a chance constrained linear program. In S. A. Directorate, editor, US Army Ground Vehicle Survivability Symposium. Munitions and Platform Branch, White Sands Missile Range, NM, 1999. Cited on p. 16.
  • [31] I. Stancu-Minasian. Stochastic Programming with Multiple Objective Functions. D. Reibel Publishing Company, 1984. Cited on p. 16.
  • [32] I. Stancu-Minasian and M. Wets. A research bibliography in stochastic programming. Operations Research, 24: 1078-1119, 1976. Cited on p. 16.
  • [33] R. Sullivan and J. Fitzsimmoms. A goal programming model for readiness and optimal deployment of resources. Socio-Economic Planning Science, 12: 215-220, 1978. Cited on p. 16.
  • [34] G. Symonds. Deterministic solutions for a class of chance constrained programming problems. Operations Research, 5: 495-512, 1967. Cited on p. 16.
  • [35] S. Takriti, J. Birge, and E. Long. A stochastic model for the unit commitment problem. IEEE Transactions on Power Systems, 11: 1497-1508, 1996. Cited on p. 16.
  • [36] J. Teghem, D. Dufrance, M. Thauvoye, and P. Kunch. Strange: an interactive method for multi-objective linear programming under uncertainty. European Journal of Operational Research, 26: 65-82, 1986. Cited on p. 16.
  • [37] A. Tomasgard, S. Dye, S. Wallace, J. Audestad, and L. Stougie. Modelling aspects of distributed processing in telecommunication networks. Annals of Operations Research, 82: 161-184, 1998. Cited on p. 16.
  • [38] M. van der Vlerk. Integrated chance constraints in an alm model for pension funds. Working Paper 03A21, SOM Research Institute-Operations Management & Operations Research, 2003. URL https://research.rug.nl/files/3027198/03a21.pdf. Cited on p. 16.
  • [39] M. H. vander Vlerk. Stochastic integer programming bibliography 1996-2007. World Wide Web, October 2007. http://mally.eco.rug.nl/spbib.html. Cited on p. 16.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34a80319-9769-45ba-9d16-ad9fe850c5ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.