BETTER VERSUS LONGER SERIES OF HEADS AND TAILS

Ireneusz Krech
Institute of Mathematics, Pedagogical University of Cracow ul. Podchorażych 2, PL-30-084 Cracow, Poland
e-mail: irekre@tlen.pl

Abstract

This article considers a part of games theory by Penney. We intuitionally believe that a shorter series is always a better one. We will prove that this is not always so, and a longer series may happen to be better (see also [1]). In the case of Penney's game, in which players can choose their series, the proved theorems can be a part of a player's game strategy.

Definition 1. Let $k \in \mathbb{N}$ and $k \geq 1$. Each result of the k-fold variation of the $\{H, T\}$ set, which is a result of the k-fold coin toss, is called a series of heads and tails. We mark its length as $|\alpha|$.

Definition 2. Let α and β be series of heads and tails. We can say that the series α is not included in the series β if it is not the subsequence of the successive elements of the series β.

Definition 3. Let α and β be series of heads and tails. Let the series α be k long and the series β be l long. Let us also assume that the series α is not included in the β one. We repeat a coin toss so long that we get k last results forming the series α or l last results forming the series β. We call this experiment waiting for one of the two stated series of results and mark it as $\delta_{\alpha-\beta}$ (see [3], pp. 406-415).

Let us consider a game of two players, G_{α} and G_{β}. In the game they conduct the experiment $\delta_{\alpha-\beta}$. If the waiting finishes with the series α - the
player G_{α} wins, and if it finishes with the series β - the player G_{β} wins. We shall call this game the Penney game ${ }^{1}$ and mark it as $g_{\alpha-\beta}$.

Let us consider the waiting of $\delta_{\alpha-\beta}$. The sequence ω having its elements from the set $\{H, T\}$ is a result of the experiment $\delta_{\alpha-\beta}$ if it fulfills the following conditions:

- the subsequence of k last results forms the series α or the subsequence of l last results forms the series β, and
- no subsequence of k or l successive results forms the series α or β.

We mark the set of all such sequences (results of the experiment $\delta_{\alpha-\beta}$) as $\Omega_{\alpha-\beta}$.

If the result ω of the experiment $\delta_{\alpha-\beta}$ is an n-element sequence, it is a specific result of an n-fold coin toss. Its probability equals $\left(\frac{1}{2}\right)^{n}$. Let $p_{\alpha-\beta}$ be a function of ω,

$$
p_{\alpha-\beta}(\omega)=\left(\frac{1}{2}\right)^{|\omega|} \text { for } \omega \in \Omega_{\alpha-\beta}
$$

and $|\omega|$ be the ω sequence length (the number of elements). This function is the distribution of probability in the set $\Omega_{\alpha-\beta}$, and the pair $\left(\Omega_{\alpha-\beta}, p_{\alpha-\beta}\right)$ is a probabilistic model of the waiting $\delta_{\alpha-\beta}$.

Let us state two opposite events in the space $\left(\Omega_{\alpha-\beta}, p_{\alpha-\beta}\right)$:

$$
\begin{aligned}
& A=\left\{\text { the waiting } \delta_{\alpha-\beta} \text { gives the series } \alpha \text { at the end }\right\} \\
& B=\left\{\text { the waiting } \delta_{\alpha-\beta} \text { gives the series } \beta \text { at the end }\right\} .
\end{aligned}
$$

Definition 4. If $P(A)=P(B)$, we say that the series α and β are equally good and mark them as $\alpha \approx \beta$.

Definition 5. If $P(A)>P(B)$, we say that the series α is better than the series β and mark them as $\alpha \gg \beta$.

In the game $g_{\alpha-\beta}$ we conduct the experiment $\delta_{\alpha-\beta}$. If the event A occurs, the player G_{α} wins. If the experiment ends with the event B, the game winner is the player G_{β}. Stating the probability of the events A and B, we can also determine the fairness of the Penney game. If the series α and β are equally good, the players have equal chance to win. The game $g_{\alpha-\beta}$ is fair. If one of the series is better than the other, the players chances to win are not equal and the game is not fair.

[^0]Let $\delta_{\alpha-\beta}$ be waiting for one of two series of heads and tails and k and l be the lengths of series α and β. Let $m \in\{1,2,3, \ldots, \min \{k, l\}\}, \alpha^{(m)}, \beta^{(m)}$ mean sequences of first m elements of series α and β, respectively, and $\alpha_{(m)}$, $\beta_{(m)}$ mean last m elements of the series α and β, respectively. Let us define the sets

$$
\begin{array}{ll}
A_{\alpha}=\left\{m: \alpha_{(m)}=\alpha^{(m)}\right\}, & A_{\beta}=\left\{m: \alpha_{(m)}=\beta^{(m)}\right\} \\
B_{\beta}=\left\{m: \beta_{(m)}=\beta^{(m)}\right\}, & B_{\alpha}=\left\{m: \beta_{(m)}=\alpha^{(m)}\right\}
\end{array}
$$

and the following sums

$$
\begin{array}{ll}
\alpha: \alpha=\sum_{j \in A_{\alpha}} 2^{j}, & \alpha: \beta=\sum_{j \in A_{\beta}} 2^{j} \\
\beta: \beta=\sum_{j \in B_{\beta}} 2^{j}, & \beta: \alpha=\sum_{j \in B_{\alpha}} 2^{j} .
\end{array}
$$

Theorem 1. In the probabilistic space of $\delta_{\alpha-\beta}$ the equation

$$
\frac{P(B)}{P(A)}=\frac{\alpha: \alpha-\alpha: \beta}{\beta: \beta-\beta: \alpha}
$$

called the Conway equation, is true ${ }^{2}$.
Remark 1. From the preceding equation, we can tell that if

$$
\mu:=\frac{\alpha: \alpha-\alpha: \beta}{\beta: \beta-\beta: \alpha}
$$

then

$$
\begin{aligned}
& \mu>1 \Leftrightarrow \beta \gg \alpha \\
& \mu=1 \Leftrightarrow \alpha \approx \beta \\
& \mu<1 \Leftrightarrow \alpha \gg
\end{aligned}
$$

Example 1. Let $\alpha=$ HTHTHT and $\beta=H H T H T H$. Let us notice that $\alpha_{(1)}=T \neq H=\alpha^{(1)}$, so $1 \notin A_{\alpha}$. Analogously

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\text { HT } H T H T \\
H T H T H T
\end{array}\right\} \Rightarrow 2 \in A_{\alpha}, \quad \begin{array}{l}
\text { HTHTHT } \\
\text { HTHTHT }
\end{array}\right\} \Rightarrow 3 \notin A_{\alpha}, \\
& \left.\left.\begin{array}{l}
\text { HTHT } H T \\
H T \text { HTHT }
\end{array}\right\} \Rightarrow 4 \in A_{\alpha}, \quad \begin{array}{l}
\text { HTHTHT } \\
\text { HTHTHT }
\end{array}\right\} \Rightarrow 5 \notin A_{\alpha},
\end{aligned}
$$

[^1]\[

\left.$$
\begin{array}{l}
\text { HTHTHT } \\
\text { HTHTHT }
\end{array}
$$\right\} \Rightarrow 6 \in A_{\alpha} .
\]

Therefore

$$
A_{\alpha}=\{2,4,6\}
$$

So

$$
\alpha: \alpha=2^{2}+2^{4}+2^{6}=84 .
$$

In the same way, we come to the following:

$$
\alpha: \beta=0, \quad \beta: \beta=66, \quad \beta: \alpha=42
$$

so

$$
\frac{\alpha: \alpha-\alpha: \beta}{\beta: \beta-\beta: \alpha}=\frac{84-0}{66-42}=\frac{21}{6}>1 .
$$

 is not a fair one.

Let $\delta_{\alpha-\beta}$ be waiting for one of the series α or β. Let us assume that $|\alpha|>|\beta|$. Intuitionally we can presume that the series β, being shorter than the series α, is a better one.

Let us consider two series: $\alpha=H H T T . . . T T$ and $\beta=T T \ldots T T$. The series are such that $|\alpha|=|\beta|+1=k+1$, where $k \geq 2$. In this case

$$
\begin{aligned}
& \alpha: \alpha=2^{k+1}, \quad \alpha: \beta=\sum_{j=1}^{k-1} 2^{j}, \\
& \beta: \beta=\sum_{j=1}^{k} 2^{j}, \quad \beta: \alpha=0 .
\end{aligned}
$$

From the Conway equation we know that

$$
\frac{P(A)}{P(B)}=\frac{\beta: \beta-\beta: \alpha}{\alpha: \alpha-\alpha: \beta}=\frac{\sum_{j=1}^{k} 2^{j}}{2^{k+1}-\sum_{j=1}^{k-1} 2^{j}}
$$

Let us notice that $\sum_{j=1}^{n} 2^{j}$ is a sum of first n elements of the geometrical sequence which has the first element 2 and the quotient 2 , so

$$
\begin{equation*}
\sum_{j=1}^{n} 2^{j}=2 \frac{1-2^{n}}{1-2}=2^{n+1}-2 \tag{1}
\end{equation*}
$$

Therefore

$$
\frac{\sum_{j=1}^{k} 2^{j}}{2^{k+1}-\sum_{j=1}^{k-1} 2^{j}}=\frac{2 \cdot 2^{k}-2}{2 \cdot 2^{k}-2^{k}+2}=\frac{1-\frac{1}{2^{k}}}{\frac{1}{2}+\frac{1}{2^{k}}}>\frac{1}{\frac{1}{2}},
$$

and

$$
\frac{P(A)}{P(B)}>2
$$

so $\alpha \gg \beta$ even if the series α is longer than the β one.
If we narrow our consideration to pairs of series that differ by more than one element in length, we can easily see that the shorter series is a better one.

Theorem 2. Let $\delta_{\alpha-\beta}$ be waiting for one of the α or β series of heads and tails which lengths fulfill the condition $|\alpha| \geq|\beta|+2$. Then the series β is better than the series α.

Proof. Let α and β be series of heads and tails and $|\alpha|=k,|\beta|=l$. Let $m \geq 2$ be such a number that $k=l+m$. As the series cannot include each other, we have

$$
\begin{array}{ll}
\{k\} \subset A_{\alpha} \subset\{1,2,3, \ldots, k\}, & A_{\beta} \subset\{1,2,3, \ldots, l-1\}, \\
\{k\} \subset B_{\beta} \subset\{1,2,3, \ldots, l\}, & B_{\alpha} \subset\{1,2,3, \ldots, l-1\}
\end{array}
$$

which leads us to the following approximations:

$$
\begin{array}{ll}
2^{k} \leq \alpha: \alpha \leq \sum_{j=1}^{k} 2^{j}, & 0 \leq \alpha: \beta \leq \sum_{j=1}^{l-1} 2^{j} \\
2^{l} \leq \beta: \beta \leq \sum_{j=1}^{l} 2^{j}, & 0 \leq \alpha: \beta \leq \sum_{j=1}^{l-1} 2^{j}
\end{array}
$$

Then

$$
\frac{\beta: \beta-\beta: \alpha}{\alpha: \alpha-\alpha: \beta} \leq \frac{\sum_{j=1}^{l} 2^{j}-0}{2^{k}-\sum_{j=1}^{l-1} 2^{j}}
$$

From (1) we get
$\frac{\sum_{j=1}^{l} 2^{j}}{2^{k}-\sum_{j=1}^{l-1} 2^{j}}=\frac{2 \cdot 2^{l}-2}{2^{m+l}-\left(2^{l}-2\right)}<\frac{2 \cdot 2^{l}}{2^{m} \cdot 2^{l}-\left(2^{l}-2\right)}=\frac{2}{2^{m}-\left(1-\frac{2}{2^{l}}\right)}<\frac{2}{4-1}$,
therefore

$$
\frac{\beta: \beta-\beta: \alpha}{\alpha: \alpha-\alpha: \beta}<1 .
$$

Considering the remark 1 , we get $\beta \gg \alpha$.

References

[1] I. Krech, P. Tlusty. Waiting time for series of successes and failures and fairness of random games. Scientific Issues, Catholic University in Ružomberok, Mathematica, II, 151-154, 2009.
[2] W. F. Penney. Problem 95: Penney-Ante. Journal of Recreational Mathematics, 7(4), 321, 1974.
[3] A. Płocki. Stochastyka dla nauczyczyciela, Wydawnictwo Naukowe NOVUM, Płock 2007.
[4] R. L. Shuo-Yen. A martingale approach to the study of occurrence of sequence patterns in repeated experiments. Annals of Probability, 8(6), 1171-1176, 1980.

[^0]: ${ }^{1}$ Proposed by Walter Penney, see [2].

[^1]: ${ }^{2}$ Discovered by John Horton Conway; the proof of its correctness is shown in [4].

