BETTER VERSUS LONGER SERIES OF HEADS AND TAILS

Ireneusz Krech

Institute of Mathematics, Pedagogical University of Cracow ul. Podchorążych 2, PL-30-084 Cracow, Poland e-mail: irekre@tlen.pl

Abstract. This article considers a part of games theory by Penney. We intuitionally believe that a shorter series is always a better one. We will prove that this is not always so, and a longer series may happen to be better (see also [1]). In the case of Penney's game, in which players can choose their series, the proved theorems can be a part of a player's game strategy.

Definition 1. Let $k \in \mathbb{N}$ and $k \geq 1$. Each result of the k-fold variation of the $\{H, T\}$ set, which is a result of the k-fold coin toss, is called a series of heads and tails. We mark its length as $|\alpha|$.

Definition 2. Let α and β be series of heads and tails. We can say that the series α is not included in the series β if it is not the subsequence of the successive elements of the series β .

Definition 3. Let α and β be series of heads and tails. Let the series α be k long and the series β be l long. Let us also assume that the series α is not included in the β one. We repeat a coin toss so long that we get k last results forming the series α or l last results forming the series β . We call this experiment waiting for one of the two stated series of results and mark it as $\delta_{\alpha-\beta}$ (see [3], pp. 406-415).

Let us consider a game of two players, G_{α} and G_{β} . In the game they conduct the experiment $\delta_{\alpha-\beta}$. If the waiting finishes with the series α – the

player G_{α} wins, and if it finishes with the series β – the player G_{β} wins. We shall call this game the Penney game¹ and mark it as $g_{\alpha-\beta}$.

Let us consider the waiting of $\delta_{\alpha-\beta}$. The sequence ω having its elements from the set $\{H, T\}$ is a result of the experiment $\delta_{\alpha-\beta}$ if it fulfills the following conditions:

- the subsequence of k last results forms the series α or the subsequence of l last results forms the series β , and
- no subsequence of k or l successive results forms the series α or β .

We mark the set of all such sequences (results of the experiment $\delta_{\alpha-\beta}$) as $\Omega_{\alpha-\beta}$.

If the result ω of the experiment $\delta_{\alpha-\beta}$ is an *n*-element sequence, it is a specific result of an *n*-fold coin toss. Its probability equals $\left(\frac{1}{2}\right)^n$. Let $p_{\alpha-\beta}$ be a function of ω ,

$$p_{\alpha-\beta}(\omega) = \left(\frac{1}{2}\right)^{|\omega|}$$
 for $\omega \in \Omega_{\alpha-\beta}$.

and $|\omega|$ be the ω sequence length (the number of elements). This function is the distribution of probability in the set $\Omega_{\alpha-\beta}$, and the pair $(\Omega_{\alpha-\beta}, p_{\alpha-\beta})$ is a probabilistic model of the waiting $\delta_{\alpha-\beta}$.

Let us state two opposite events in the space $(\Omega_{\alpha-\beta}, p_{\alpha-\beta})$:

 $A = \{ \text{the waiting } \delta_{\alpha-\beta} \text{ gives the series } \alpha \text{ at the end} \},\$

 $B = \{$ the waiting $\delta_{\alpha-\beta}$ gives the series β at the end $\}$.

Definition 4. If P(A) = P(B), we say that the series α and β are equally good and mark them as $\alpha \approx \beta$.

Definition 5. If P(A) > P(B), we say that the series α is better than the series β and mark them as $\alpha \gg \beta$.

In the game $g_{\alpha-\beta}$ we conduct the experiment $\delta_{\alpha-\beta}$. If the event A occurs, the player G_{α} wins. If the experiment ends with the event B, the game winner is the player G_{β} . Stating the probability of the events A and B, we can also determine the fairness of the Penney game. If the series α and β are equally good, the players have equal chance to win. The game $g_{\alpha-\beta}$ is fair. If one of the series is better than the other, the players chances to win are not equal and the game is not fair.

¹Proposed by Walter Penney, see [2].

Let $\delta_{\alpha-\beta}$ be waiting for one of two series of heads and tails and k and l be the lengths of series α and β . Let $m \in \{1, 2, 3, ..., \min\{k, l\}\}, \alpha^{(m)}, \beta^{(m)}$ mean sequences of first m elements of series α and β , respectively, and $\alpha_{(m)}$, $\beta_{(m)}$ mean last m elements of the series α and β , respectively. Let us define the sets

$$A_{\alpha} = \{m : \alpha_{(m)} = \alpha^{(m)}\}, \qquad A_{\beta} = \{m : \alpha_{(m)} = \beta^{(m)}\},$$
$$B_{\beta} = \{m : \beta_{(m)} = \beta^{(m)}\}, \qquad B_{\alpha} = \{m : \beta_{(m)} = \alpha^{(m)}\},$$

and the following sums

$$\alpha : \alpha = \sum_{j \in A_{\alpha}} 2^{j}, \qquad \alpha : \beta = \sum_{j \in A_{\beta}} 2^{j},$$
$$\beta : \beta = \sum_{j \in B_{\beta}} 2^{j}, \qquad \beta : \alpha = \sum_{j \in B_{\alpha}} 2^{j}.$$

Theorem 1. In the probabilistic space of $\delta_{\alpha-\beta}$ the equation

$$\frac{P(B)}{P(A)} = \frac{\alpha : \alpha - \alpha : \beta}{\beta : \beta - \beta : \alpha},$$

called the Conway equation, is $true^2$.

Remark 1. From the preceding equation, we can tell that if

$$\mu := \frac{\alpha : \alpha - \alpha : \beta}{\beta : \beta - \beta : \alpha},$$

then

$$\begin{split} \mu > 1 &\Leftrightarrow \beta \gg \alpha, \\ \mu = 1 &\Leftrightarrow \alpha \approx \beta, \\ \mu < 1 &\Leftrightarrow \alpha \gg \beta. \end{split}$$

Example 1. Let $\alpha = HTHTHT$ and $\beta = HHTHTH$. Let us notice that $\alpha_{(1)} = T \neq H = \alpha^{(1)}$, so $1 \notin A_{\alpha}$. Analogously

$\left. \begin{array}{c} \mathbf{HT}HTHT\\ HTHT\mathbf{HT} \end{array} \right\} \ \Rightarrow \ 2 \in A_{\alpha},$	$ \left. \begin{array}{c} \mathbf{HTH}THT\\ HTH\mathbf{THT} \end{array} \right\} \ \Rightarrow \ 3 \notin A_{\alpha}, $
$\left. \begin{array}{c} \mathbf{HTHT} \mathbf{HT} \\ \mathbf{HTHTHT} \end{array} \right\} \Rightarrow 4 \in A_{\alpha},$	$\left. \begin{array}{c} \mathbf{HTHTHT} \\ \mathbf{HTHTHT} \end{array} \right\} \ \Rightarrow \ 5 \notin A_{\alpha},$

²Discovered by John Horton Conway; the proof of its correctness is shown in [4].

$$\left. \begin{array}{l} \mathbf{HTHTHT} \\ \mathbf{HTHTHT} \end{array} \right\} \ \Rightarrow \ 6 \in A_{\alpha}.$$

Therefore

$$A_{\alpha} = \{2, 4, 6\},\$$

 \mathbf{SO}

$$\alpha : \alpha = 2^2 + 2^4 + 2^6 = 84.$$

In the same way, we come to the following:

$$\alpha:\beta=0,\qquad \beta:\beta=66,\qquad \beta:\alpha=42$$

 \mathbf{SO}

$$\frac{\alpha:\alpha-\alpha:\beta}{\beta:\beta-\beta:\alpha} = \frac{84-0}{66-42} = \frac{21}{6} > 1$$

Therefore $HHTHTH \gg HTHTHT$, and this means that $g_{HTHTHT-HHTHTH}$ is not a fair one.

Let $\delta_{\alpha-\beta}$ be waiting for one of the series α or β . Let us assume that $|\alpha| > |\beta|$. Intuitionally we can presume that the series β , being shorter than the series α , is a better one.

Let us consider two series: $\alpha = HHTT...TT$ and $\beta = TT...TT$. The series are such that $|\alpha| = |\beta| + 1 = k + 1$, where $k \ge 2$. In this case

$$\alpha : \alpha = 2^{k+1}, \qquad \alpha : \beta = \sum_{j=1}^{k-1} 2^j,$$
$$\beta : \beta = \sum_{j=1}^k 2^j, \qquad \beta : \alpha = 0.$$

From the Conway equation we know that

$$\frac{P(A)}{P(B)} = \frac{\beta : \beta - \beta : \alpha}{\alpha : \alpha - \alpha : \beta} = \frac{\sum_{j=1}^{k} 2^j}{2^{k+1} - \sum_{j=1}^{k-1} 2^j}.$$

Let us notice that $\sum_{j=1}^{n} 2^{j}$ is a sum of first *n* elements of the geometrical sequence which has the first element 2 and the quotient 2, so

$$\sum_{j=1}^{n} 2^{j} = 2\frac{1-2^{n}}{1-2} = 2^{n+1} - 2.$$
(1)

Therefore

$$\frac{\sum_{j=1}^{k} 2^{j}}{2^{k+1} - \sum_{j=1}^{k-1} 2^{j}} = \frac{2 \cdot 2^{k} - 2}{2 \cdot 2^{k} - 2^{k} + 2} = \frac{1 - \frac{1}{2^{k}}}{\frac{1}{2} + \frac{1}{2^{k}}} > \frac{1}{\frac{1}{2}},$$

and

$$\frac{P(A)}{P(B)} > 2,$$

so $\alpha \gg \beta$ even if the series α is longer than the β one.

If we narrow our consideration to pairs of series that differ by more than one element in length, we can easily see that the shorter series is a better one.

Theorem 2. Let $\delta_{\alpha-\beta}$ be waiting for one of the α or β series of heads and tails which lengths fulfill the condition $|\alpha| \ge |\beta|+2$. Then the series β is better than the series α .

Proof. Let α and β be series of heads and tails and $|\alpha| = k$, $|\beta| = l$. Let $m \geq 2$ be such a number that k = l + m. As the series cannot include each other, we have

$$\begin{split} \{k\} \subset A_{\alpha} \subset \{1,2,3,...,k\}, & A_{\beta} \subset \{1,2,3,...,l-1\}, \\ \{k\} \subset B_{\beta} \subset \{1,2,3,...,l\}, & B_{\alpha} \subset \{1,2,3,...,l-1\}, \end{split}$$

which leads us to the following approximations:

$$2^{k} \leq \alpha : \alpha \leq \sum_{j=1}^{k} 2^{j}, \qquad 0 \leq \alpha : \beta \leq \sum_{j=1}^{l-1} 2^{j}$$
$$2^{l} \leq \beta : \beta \leq \sum_{j=1}^{l} 2^{j}, \qquad 0 \leq \alpha : \beta \leq \sum_{j=1}^{l-1} 2^{j}.$$

Then

$$\frac{\beta:\beta-\beta:\alpha}{\alpha:\alpha-\alpha:\beta} \le \frac{\sum_{j=1}^{l} 2^j - 0}{2^k - \sum_{j=1}^{l-1} 2^j}.$$

From (1) we get

$$\frac{\sum_{j=1}^{l} 2^{j}}{2^{k} - \sum_{j=1}^{l-1} 2^{j}} = \frac{2 \cdot 2^{l} - 2}{2^{m+l} - (2^{l} - 2)} < \frac{2 \cdot 2^{l}}{2^{m} \cdot 2^{l} - (2^{l} - 2)} = \frac{2}{2^{m} - (1 - \frac{2}{2^{l}})} < \frac{2}{4 - 1},$$

therefore

$$\frac{\beta:\beta-\beta:\alpha}{\alpha:\alpha-\alpha:\beta} < 1.$$

Considering the remark 1, we get $\beta \gg \alpha$.

References

- I. Krech, P. Tlusty. Waiting time for series of successes and failures and fairness of random games. *Scientific Issues, Catholic University in Ružomberok, Mathematica*, II, 151–154, 2009.
- [2] W. F. Penney. Problem 95: Penney-Ante. Journal of Recreational Mathematics, 7(4), 321, 1974.
- [3] A. Płocki. *Stochastyka dla nauczyczyciela*, Wydawnictwo Naukowe NOVUM, Płock 2007.
- [4] R. L. Shuo-Yen. A martingale approach to the study of occurrence of sequence patterns in repeated experiments. Annals of Probability, 8(6), 1171-1176, 1980.