PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Azo dye wastewater treatment in a novel process of biofilm coupled with electrolysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Azo dye wastewater treatment is urgent necessary nowadays. Electrochemical technologies commonly enable more efficient degradation of recalcitrant organic contaminants than biological methods, but those rely greatly on the energy consumption. A novel process of biofilm coupled with electrolysis, i.e., bioelectrochemical system (BES), for methyl orange (MO) dye wastewater treatment was proposed and optimization of main influence factors was performed in this study. The results showed that BES had a positive effect on enhancement of color removal of MO wastewater and 81.9% of color removal efficiency was achieved at the optimum process parameters: applied voltage of 2.0 V, initial MO concentration of 20 mg/L, glucose loads of 0.5 g/L and pH of 8.0 when the hydraulic retention time (HRT) was maintained at 3 d, displaying an excellent color removal performance. Importantly, a wide range of effective pH, ranging from 6 to 9, was found, thus greatly favoring the practical application of BES described here. The absence of a peak at 463 nm showed that the azo bond of MO was almost completely cleaved after degradation in BES. From these results, the proposed method of biodegradation combined with electrochemical technique can be an effective technology for dye wastewater treatment and may hopefully be also applied for treatment of other recalcitrant compounds in water and wastewater
Rocznik
Strony
38--43
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Anhui Science and Technology University, Fengyang, China
autor
  • Anhui Science and Technology University, Fengyang, China
autor
  • Anhui Science and Technology University, Fengyang, China
Bibliografia
  • 1. Al-Amrani, W.A., Lim, P.E., Seng, C.E. & Wan Ngah, W.S. (2013). Effects of co-substrate and biomass acclimation concentration on the bioregeneration of azo dye-loaded mono-amine modified silica, Bioresource Technology, 143, pp. 584-591, DOI: 10.1016/j.biortech.2013.06.055.
  • 2. Castro, F.D., Bassin, J.P. & Dezotti, M. (2017). Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products, Environmental Science and Pollution Research, 24, 7, pp. 6307-6316, DOI: 10.1007/s11356-016-7119-x.
  • 3. Chang, J.S., Chou, C., Lin, Y.C., Lin, P.J., Ho, J.Y. & Hu, T.L. (2001). Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola, Water Research, 35, 12, pp. 2841-2850.
  • 4. Chen, D., Yang, K. & Wan, H. (2015). High nitrate removal by autohydrogenotrophic bacteria in a biofilm-electrode reactor, Desalination and Water Treatment, 55, 5, pp. 16-20, DOI: 10.1080/19443994.2014.925837.
  • 5. Franca, R.D.G., Vieira, A., Mata, A.M.T., Carvalho, G.S., Pinheiro, H.M. & Lourenço, N.D. (2015). Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater, Water Research, 85, pp. 327-336, DOI: 10.1016/j.watres.2015.08.043.
  • 6. Hamad, H., Bassyouni, D., El-Ashtoukhy, E., Amin, N. & Abd El-Latif, M. (2018). Electrocatalytic degradation and minimization of specific energy consumption of synthetic azo dye from wastewater by anodic oxidation process with an emphasis on enhancing economic efficiency and reaction mechanism, Ecotoxicology and Environmental Safety, 148, pp. 501-512, DOI: 10.1016/j.ecoenv.2017.10.061.
  • 7. Işik, M. & Sponza, D. (2005). Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket ( UASB) reactor through decolorization of Congo Red azo dye, Bioresource Technology, 96, 5, pp. 633-643, DOI: 10.1016/j.biortech.2004.06.004.
  • 8. Kodam, K.M., Soojhawon, I., Lokhande, P.D. & Gawai, K.R. (2005). Microbial decolorization of reactive azo dyes under aerobic conditions, World Journal of Microbiology and Biotechnology, 21, 3, pp. 367-370, DOI: 10.1007/s11274-004-5957-z.
  • 9. Kuroda, Y.S.M. (1993). Electric prompting and control of denitrification, Biotechnology and Bioengineering, 42, pp. 535-537.
  • 10. Liu, S., Song, H., Wei, S., Liu, Q., Li, X. & Qian, X. (2015). Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors, Biochemical Engineering Journal, 93, pp. 294-302, DOI: 10.1016/j.bej.2014.11.002.
  • 11. Martínez-Huitle, C. A. & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Applied Catalysis B: Environmental, 87, 3-4, pp. 105-145, DOI: 10.1016/j.apcatb.2008.09.017.
  • 12. Murali, V., Ong, S., Ho, L. & Wong, Y. (2013). Decolorization of methyl orange using upflow anaerobic sludge blanket (UASB) reactor-an investigation of co-substrate and dye degradation kinetics, Desalination and Water Treatment, 51, pp. 1-10, DOI: 10.1080/19443994.2013.782255.
  • 13. Nidheesh, P.V. & Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299, pp. 1-15, DOI: 10.1016/j.desal.2012.05.011.
  • 14. Panda, N., Sahoo, H. & Mohapatra, S. (2011). Decolourization of Methyl Orange using Fenton-like mesoporous Fe2O3-SiO2 composite, Journal of Hazardous Materials, 185, 1, pp. 359-365, DOI: 10.1016/j.jhazmat.2010.09.042.
  • 15. Pearce, C.I., Lloyd, J.R. & Guthrie, J.T. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review, Dyes Pigments, 58, 3, pp. 179-196, DOI: 10.1016 /S0143-7208(03)00064-0.
  • 16. Punzi, M., Anbalagan, A., Börner, R.A., Svensson, B., Jonstrup, M. & Mattiasson, B. (2015). Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure, Chemical Engineering Journal, 270, pp. 290-299, DOI: 10.1016/j.cej.2015.02.042.
  • 17. Sarayu, K. & Sandhya, S. (2012). Current technologies for biological treatment of textile wastewater-a review, Applied Biochemistry and Biotechnology, 167, 3, pp. 645-661, DOI: 10.1007/s12010-012-9716-6.
  • 18. Sasaki, D., Sasaki, K., Morita, M., Hirano, S., Matsumoto, N. & Ohmura, N. (2012). Bioelectrochemical regulation accelerates facultatively syntrophic proteolysis, Journal of Bioscience & Bioengineering, 114, 1, pp. 59-63, DOI: 10.1016/j.jbiosc.2012.02.013.
  • 19. Shabbir, S., Faheem, M., Ali, N., Kerr, P.G. & Wu, Y. (2017). Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth, Bioresource Technology, 225, pp. 395-401, DOI: 10.1016/j.biortech.2016.11.115.
  • 20. Sponza, D.T. & Işik, M. (2005). Reactor performances and fate of aromatic amines through decolorization of Direct Black 38 dye under anaerobic/aerobic sequentials, Process Biochemistry, 40, 1, pp. 35-44, DOI: 10.1016/j.procbio.2003.11.030.
  • 21. Tehrani-Bagha, A.R., Mahmoodi, N.M. & Menger, F.M. (2010). Degradation of a persistent organic dye from colored textile wastewater by ozonation, Desalination, 260, 1-3, pp. 34-38, DOI: 10.1016/j.desal.2010.05.004.
  • 22. Thrash, J.C. & Coates, J.D. (2008). Review: direct and indirect electrical stimulation of microbial metabolism, Environmental Science & Technology, 42, 11 , pp. 3921-3931, DOI: 10.1021/es702668w.
  • 23. Wang, J., Wang, Y., Bai, J., Liu, Z., Song, X., Yan, D., Abiyu, A., Zhao, Z. & Yan, D. (2017). High efficiency of inorganic nitrogen removal by integrating biofilm-electrode with constructed wetland: Autotrophic denitrifying bacteria analysis, Bioresource Technology, 227, pp. 7-14, DOI: 10.1016/j.biortech.2016.12.046.
  • 24. Zhong, Y., Li, X., Yang, Q., Wang, D. & Yao, F. (2016). Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor, Journal of Hazardous Materials, 307, pp. 82-90, DOI: 10.1016/j.jhazmat.2015.12.053.
  • 25. Zou, H., Ma, W. & Wang, Y. (2015). A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation, Archives of Environmental Protection, 41, 4, pp. 33-39, DOI: 10.1515/aep-2015-0037
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-349644ce-526c-4596-a86b-311932e9dc1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.