PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of wastewater treatment and the method of sludge disposal on the gasification process

Autorzy
Identyfikatory
Warianty tytułu
PL
Wpływ oczyszczania ścieków i sposobu zagospodarowania osadów ściekowych na proces zgazowania
Języki publikacji
EN
Abstrakty
EN
Municipal wastewater treatment results in the production of large quantities of sewage sludge, which requires proper environmentally accepted management before final disposal. Sewage sludge is a by-product of current wastewater treatment technologies. Sewage sludge disposal depends on the sludge treatment methods used in the wastewater treatment plant (anaerobic or aerobic digestion, drying, etc.). Taking into consideration presented given this information, a study concerning the effects of wastewater treatment processes and sewage sludge drying method on the sewage sludge gasification gas parameters was performed. Gasification is a prospective alternative method of sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed bed gasifier installation was designed and built. Two types of sewage sludge feedstock, SS1 and SS2, were analyzed. Sewage sludge SS1 came from a wastewater treatment plant operating in the mechanical and biological system while sewage sludge SS2 was collected in a mechanical, biological and chemical wastewater treatment plant with simultaneous phosphorus precipitation. The sludge produced at the plants was subject to fermentation and then, after being dehydrated, dried in a cylindrical drier on shelves heated up to 260ºC (sewage sludge SS1) and using hot air at a temperature of 150ºC in a belt drier (sewage SS2). The analysis shows that the sewage sludge properties strongly depend on the wastewater sources and the wastewater treatment processes. The gasification results, presented as a function of the amount of gasification agent, show that the greater oxygen content of SS1 caused a reduction in the reaction temperature. Paradoxically, this effect caused an increase in the quantity of combustible components in the gas. As expected, increasing the air flow rate caused a decrease in the heating value of the gas produced. A higher amount of oxidizer increases the amounts of noncombustible species and the volumetric fraction of nitrogen, thus reducing the heating value of the obtained gas. The higher hydrogen content in SS1 affects the gasification gas composition. As a result, combustible components are the majority of the syngas.
PL
Oczyszczanie ścieków prowadzi do powstawania dużej ilości osadów ściekowych, które z punktu widzenia środowiska należy bezpiecznie zagospodarować. Ilość osadów zależy zarówno od zastosowanej metody oczyszczania ścieków, jak i sposobu ich zagospodarowania (tlenowa lub beztlenowa stabilizacja, suszenie itp.). Biorąc to pod uwagę, w pracy badano równocześnie wpływ konfiguracji oczyszczania ścieków oraz metody suszenia osadów na parametry paliwa zastępczego otrzymanego z osadów i skład gazu powstającego podczas ich zgazowania. Zgazowanie bowiem jest obecnie perspektywiczną i alternatywną metodą zagospodarowania osadów ściekowych. Na potrzeby realizacji pracy został zaprojektowany i zbudowany reaktor zgazowania ze złożem stałym. Analizie poddano dwa różne typy osadów ściekowych oznaczone jako SS1 i SS2. Osad ściekowy SS1 pochodził z oczyszczalni ścieków pracującej w układzie mechaniczno-biologicznym, a osad SS2 z oczyszczalni mechaniczno-biologiczno-chemicznej z symultanicznym strącaniem fosforu. Powstające w oczyszczalniach osady poddawane są procesowi fermentacji, a następnie po odwodnieniu są suszone w suszarce cylindrycznej na półkach podgrzanych do 260°C (osad ściekowy SS1) i przy użyciu gorącego powietrza o temperaturze 150°C w suszarce taśmowej (osad SS2). Na podstawie przeprowadzonych badań wykazano, że właściwości osadów ściekowych wyraźnie zależą od rodzaju zastosowanej metody oczyszczania ścieków, jak również sposobu zagospodarowania osadów ściekowych. Rezultaty procesu zgazowania analizowanych osadów prezentowane w funkcji ilości czynnika zgazowującego wskazują, że większa zawartość tlenu w próbce SS1 powoduje obniżenie temperatury reakcji zgazowania. Paradoksalnie, prowadzi to do wzrostu ilości palnych składników w gazie. Z kolei wzrost ilości strumienia czynnika zgazowującego prowadzi do obniżenia wartości opałowej otrzymanego gazu. Wyższa zawartość tlenu rosnąca wraz ze wzrostem ilości czynnika zgazowującego powoduje wzrost niepalnych składników w gazie (głównie azotu).
Rocznik
Strony
255--268
Opis fizyczny
Bibliogr. 25 poz., wykr., tab., rys
Twórcy
autor
  • Institute of Thermal Technology, Silesian University of Technology, ul. Konarskiego 22, 44-100 Gliwice, Poland, phone +48 32 237 29 83, fax +48 32 237 28 72
autor
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 16 98, fax +48 32 237 10 47
Bibliografia
  • [1] 6th Commission summary on the implementation of the Urban Waste Water Treatment Directive, European Commission Staff Working Paper, Brussels, 7.12.2011.
  • [2] Smolyody L, Patziger M. Water Sci Technol. 2012;66:1081-1087. DOI: 10.2166/wst.2012.289.
  • [3] Aggeli K, Kalavrouziotis IK, Bezergianni S. Fresen Environ Bull. 2009;18:1295-1301.
  • [4] Banu JR, Do KU, Yeom IT. World J Microb Biot. 2008;24:2981-2986. DOI: 10.1007/s11274-008-9841-0.
  • [5] Kelessidis A, Stasinakis AS. Waste Manag. 2012;32:1186-1195. DOI: 10.1016/j.wasman.2012.01.012.
  • [6] Cao Y, Pawłowski A. Renew Sust Energ Rev. 2012;16:1657-1665. DOI: 10.1016/j.rser.2011.12.014.
  • [9] Magdziarz A, Werle S. Waste Manag. 2014;1:174-179. DOI: 10.1016/j.wasman.2013.10.033.
  • [10] Chang J, Fu Y, Luo Z. Biomass Bioenergy. 2012;39:67-72. DOI: 10.1016/j.biombioe.2011.01.044.
  • [11] Marrero TW, McAuley BP, Sutterlin WR, Morris JS, Manahan SE. Waste Manag. 2004;24:193-198. DOI: 10.1016/S0956-053X(03)00127-2.
  • [12] Kobayashi N, Tanaka M, Piao G, Kobayashi J, Hatano S, Itaya Y, et al. Waste Manag. 2009;29:245-251. DOI: 10.1016/j.wasman.2008.04.014.
  • [13] Thanapal SS, Annamalai K, Sweeten JM, Gordillo G. Applied Energy. 2012;97:525-531. DOI: 10.1016/j.apenergy.2011.11.072.
  • [14] Buckley JC, Schwarz PM. Environ Monitor and Assess. 2003;84:111-27. DOI: 10.1023/A:1022847416139.
  • [15] Werle S. Environ Prot Eng. 2013;39:25-32. DOI: 10.5277/EPE130203.
  • [16] Taba LE, Irfan MF, Daud WAMW, Chakrabarti MH. Renew Sust Energy Rev. 2012;16:5584-5596. DOI: 10.1016/j.rser.2012.06.015.
  • [17] The Polish Ordinance of Ministry for the Environment from 24 July 2006 about on the conditions which must be fulfilled while discharging waste water to water or ground and on substances particularly dangerous for the water environment (DzU No 137, item 984).
  • [18] PN-EN 14774-3:2010 - Solid Biofuels - methods for moisture determining using drier method. Part 3 - moisture analysis in general sample.
  • [19] PN-EN 15402:2011 - Solid recovered fuels - Determination of volatile content.
  • [20] PN-EN 15403:2011 - Solid recovered fuels - Determination of ash content.
  • [21] Viana H, Vega-Nieva DJ, Oritz Torres L, Lousada J, Aranha J. Fuel. 2012;102:737-745. DOI: 10.1016/j.fuel.2012.06.035.
  • [23] Vamvuka D, Zografos D, Alevizos G. Biores Technol. 2008;99:3534-3544. DOI: 10.1016/j.biortech.2007.07.049.
  • [24] CEN/TS 15404:2006 - Solid recovered fuels. Methods for the determination of ash melting behavior by using characteristic temperatures.
  • [25] Werle S, Wilk RK. Chem Eng Trans. 2012;29:715-720.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3495f14c-1e99-4a8a-92ad-43372091b333
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.