PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of ORC and Kalina cycles for waste heat recovery in the steel industry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a comparative study of waste heat recovery systems based on the Organic Rankine Cycle (ORC) and Kalina Cycle (KC) that could be applied to the steel industry. The simulations were performed for an electric arc furnace (EAF) steel mill and waste heat recovery system with saturated steam as a heat carrier. Commercial software ASPEN-HYSYS. was used to calculate system performances under different loads for ORC with different working fluids (butylobenzene, n-hexane, n-pentane) and for KC. Each case was optimized for maximum system efficiency. In terms of net system electric efficiency and electric power output, under nominal operating conditions similar performances were obtained for ORC with n-pentane working fluid and KC based systems. The highest system efficiency was observed for ORC with butylobenzene as working fluid, whereas the KC becomes competitive versus ORC for heat carrier temperatures of 200°C and above.
Rocznik
Strony
302--307
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
autor
  • CIM-mes Projekt Sp.z o.o., 125/127 Aleje Jerozolimskie, 02-017 Warsaw, Poland
Bibliografia
  • [1] URL http://www.globalcement.com/magazine/articles/ 721-kalina-cycle-power-systems-in-waste-heat-recovery-applications.
  • [2] Pitagoras project webpage, URL http://pitagorasproject.eu.
  • [3] M. J. Box. A new method of constrained optimization and a comparison with other methods. The Computer Journal, pages 42–45, 1965.
  • [4] F. Campana, M. Bianchi, L. Branchini, A. De Pascale, and others. Orc waste heat recovery in european energy intensive industries, Energy and GHG savings. Energy Conversion and Management, 76:244–252, 2013.
  • [5] A. I. Kalina. Combined-cycle system with novel bottoming cycle. ASME Journal of Engineering for Gas Turbines and Power, 106:737–42, 1984.
  • [6] Kyoung Hoon Kim, Hyung Jong Ko, and Kyoungjin Kim. Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles. Applied Energy, pages 970–981, 2014.
  • [7] J. L. Kuester and J.H. Mize. Optimization Techniques with FORTRAN. McGraw-Hill Book Company. 1973.
  • [8] D. H. Kwak, , S. Y. Oh, and J. K. Kim. Process integration study for the use of industrial low grade heat. Chemical Engineering Transactions, 29:1591–6, 2012.
  • [9] B. K. Saleh, M. Wendland, and J. Fischer. Working fluids for lowtemperature organic rankine cycles. Energy, 32:1210–21, 2007.
  • [10] R. A. Victor, J. K. Kim, and R. Smith. Composition optimisation of working fluids for organic rankine cycles and kalina cycles. Energy, pages 114–126, 2013.
  • [11] C. Walsh and P. Thornely. Cost effective greenhouse gas reductions in the steel industry from an organic rankine cycle. Chemical Engineering Transactions, 25:905–10, 2011.
  • [12] D. Wang, X. Ling, and H. Peng. Performance analysis of double organic rankine cycle for discontinuous low temperature waste heat recovery. Applied Thermal Engineering, 48:63–71, 2012.
  • [13] X. Zhang, M. He, and Y. Zhang. A review of research on the kalian cycle. Renewable and Sustainable Energy Reviews, 16:5309–5318, 2012.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3493874c-3673-43d2-a0a7-af902f9e6135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.