Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study compares different variants of aeroelastic energy harvesters due to the power they generate. For this purpose, models of devices with different stiffness characteristics were prepared: linear, nonlinear, with combined stiffness and bistable. Then, using the authorial procedure, analytical expressions that describe the power of each system were determined and the influence of individual parameters on this quantity was examined. By way of optimization, the system parameters have been selected in such a way that, regardless of the flow velocity, each of them generates the maximum possible power. Based on the results obtained in this way, the advisability of using a device with combined stiffness and bistable characteristics was rejected. Moreover, it was pointed out that the linear system would provide greater efficiency for lower flow velocities.
Czasopismo
Rocznik
Tom
Strony
art. no. 2021209
Opis fizyczny
Bibliogr. 26 poz., rys.,wykr.
Twórcy
autor
- Poznan University of Technology, Institute of Applied Mechanics, Jana Pawła II 24, 60-956 Poznań, Poland
autor
- Poznan University of Technology, Institute of Applied Mechanics, Jana Pawła II 24, 60-956 Poznań, Poland
Bibliografia
- 1. J.P. Den Hartog. Mechanical Vibrations, fourth ed. McGraw-Hill, New York, USA, 1956.
- 2. M. Novak. Aeroelastic galloping of prismatic bodies. Journal of the Engineering Mechanics Division, 96:115-142, 1969.
- 3. Y. Ng, S. C. Luo, Y. T. Chew. On using high-order polynomial curve fits in the quasi-steady theory for square-cylinder galloping. Journal of Fluid and Structures, 20(1):141-146, 2005.
- 4. A. Abdelkefi, M. R. Hajj. A. Nayfeh. Power harvesting from transverse galloping of square cylinder. Nonlinear Dynamics 70:1355-1363, 2012.
- 5. S. Boisseau, G. Despesse, B. Ahmed Seddik. Electrostatic Conversion for Vibration Energy Harvesting. Small-Scale Energy Harvesting, Intech, 2012. doi: 10.5772/51360.
- 6. A. Kumar, S. S. Balpande, S. C. Anjankar. Electromagnetic Energy Harvester for Low Frequency Vibrations Using MEMS. Procedia Computer Science, 79:785-792, 2016.
- 7. P. Carneiro, M.P.S. dos Santos, A. Rodrigues, J.A. Ferreira, J.A. Simões, A.T. Marques, A.L. Kholkin. Electromagnetic energy harvesting using magnetic levitation architectures: A review. Appl. Energy, 260:114191, 2020.
- 8. B.G. Baraskar, T.C. Darvade, R.C. Kambale, J. Ryu, V. Annapureddy. Harvesting stray magnetic field for powering wireless sensors. Ferroelectric Materials for Energy Harvesting and Storage. Elsevier, Amsterdam, The Netherlands, 249-278, 2021.
- 9. R. Saibal. Electromechanical-MEMS Vibrational Energy Harvesting. Integrated ICT Hardware & Systems. Tyndall National Institute. Dublin, Ireland, 2021.
- 10. A. Abdelkefi, A. Nayfeh, M. R. Hajj. Modeling and analysis of piezoaeroelastic energy harvesters, Nonlinear Dynamics, 67(2):925-939, 2011.
- 11. C. Covaci, A. Gontean, Piezoelectric Energy Harvesting Solutions: A Review. Sensors, 20(12):3512, 2020.
- 12. C. Howells. Piezoelectric energy harvesting. Energy Conversion and Management, 50:1847-1850, 2009.
- 13. C. De Marqui, A. Erturk, D. J. Inman. An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration, 327:9-25, 2019.
- 14. G. Alonso, J. Meseguer, A. Sanz-Andres, E. Valero. On the galloping instability of two-dimensional bodies having elliptical cross-sections. Journal of Wind Engineering and Industrial Aerodynamics, 98:438-448, 2010.
- 15. N. J. Nikitas, H. G. Macdonald. Misconceptions and Generalizations of the Den Hartog Galloping Criterion. Journal of Engineering Mechanics, 140(4), 2014.
- 16. J. Meseguer, A. Sanz-Andres, G. Alonso. Determination of Maximum Mechanical Energy Efficiency in Energy Galloping Systems. Journal of Engineering Mechanics, 141:1355-1363, 2015.
- 17. J. Kluger, F. C. Moon, E. Rand. Shape optimization of a blunt body Vibro-wind galloping oscillator. Journal of Fluids and Structures, 40:185-200, 2013.
- 18. A. Barrero-Gil, G. Alonso, and A. Sanz-Andrés. Energy harvesting from transverse galloping. Journal of Sound and Vibration, 329(14):2873- 2883, 2010.
- 19. S. Jo, W. Sun, C. Son, Galloping-based energy harvester considering enclosure effect. AIP Adv, 8(9), 2018.
- 20. Y. Wu, D. Li, J. Xiang. Dimensionless modeling and nonlinear analysis of a coupled pitch-plunge-leadlag airfoil-based piezoaeroelastic energy harvesting system. Nonlinear Dynamics, 92(2):153-167, 2018.
- 21. M. Hwang, A. Arrieta. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves. Scientific Report, 8(1), 2018.
- 22. R. Vasconcellos, A. Abdelkefi. Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom. Communications in Nonlinear Science and Numerical Simulation, 20(1):324-334, 2015.
- 23. Y. Wu, D. Li, J. Xiang, A. Da Ronch. A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom. Theoretical and Applied Mechanics Letters, 6:244-247, 2016.
- 24. S. Liu, P. Li, Y. Yang. On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter. Meccanica, 53:2807-2831, 2018.
- 25. H. Elahi, M. Eugeni, L. Lampani. Modeling and Design of a Piezoelectric Nonlinear Aeroelastic Energy Harvester. Integrated Ferroelectrics, 211(1):132-151, 2020.
- 26. J. Wang, L. Geng, S. Zhou. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica,36:592-605, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-348f2112-cc76-41ca-a369-51f5b53366a1