PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Coarse-To-Fine WC Grain Ratio on Mechanical Properties and Abrasive Wear of WC-8Co Cemented Carbides

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ udziału węglika WC gruboziarnistego do drobnoziarnistego na właściwości mechaniczne i zużycie ścierne węglików spiekanych WC-8Co
Języki publikacji
EN
Abstrakty
EN
This study performs a comprehensive analysis concerning the amount of fine tungsten carbide (WC) grains needed for the appropriate reinforcement of the cobalt (Co) metallic binder in WC-8Co cemented carbides. The goal is to investigate the balance of coarse-to-fine grain distribution to achieve overall improvement of the material’s mechanical and wear properties. All Samales possessed the same WC-8Co binder content, therefore, allowing the role of grain size distribution to be tested. It was found that a ratio of 8:1 wt% of coarse to ultrafine grain WC yielded an appropriate balance between material hardness, fracture toughness, and rupture strength. Upon adding grain growth inhibitors vanadium carbide (VC) and chromium carbide (Cr3C2), the overall wear resistance is further improved compared to undoped composites when Samales are tested under abrasive wear conditions.
PL
W artykule przedstawiono wyniki badań dotyczących wpływu ilości drobnoziarnistego węglika wolframu na wzmocnienie metalicznego spoiwa kobaltowego (Co) w węgliku spiekanym WC-8Co. Celem badań jest znalezienie optymalnego udziału węglika gruboziarnistego do drobnoziarnistego dla uzyskania poprawy właściwości mechanicznych i charakterystyk zużyciowych. Dla wszystkich próbek zastosowano jednakowy udział spoiwa, by zbadać jedynie wpływ udziału grubo- do drobnoziarnistego węglika w spieku. W wyniku przeprowadzonych badań stwierdzono, że dla proporcji 8:1 udziału węglika grubo- do drobnoziarnistego uzyskuje się najkorzystniejsze cechy użytkowe, tj.: twardość, udarność i odporność na pękanie. Ponadto poprzez dodanie do kompozytu inhibitorów wzrostu, np. węglika wanadu (VC) lub węglika chromu (Cr3C2), zwiększa się odporność na zużycie ścierne w stosunku do kompozytów bez dodatku inhibitorów.
Czasopismo
Rocznik
Tom
Strony
103--115
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., wz.
Twórcy
autor
  • Department of Materials Engineering, Tallinn University of Technology, Tallinn, Estonia
autor
  • Department of Materials Engineering, Tallinn University of Technology, Tallinn, Estonia
  • Department of Materials Engineering, Tallinn University of Technology, Tallinn, Estonia
autor
  • Department of Materials Engineering, Tallinn University of Technology, Tallinn, Estonia
autor
  • Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
Bibliografia
  • 1. Springgs G.E., History of fine grain hardmetals. International Journal of Refractory Metals and Hard Materials. 13: (1995), p. 241–255.
  • 2. Deng X., Patterson B.R., Chawla K.K., Koopman M.C., Fang Z., Lockwood G., Griffo A., Mechanical properties of a hybrid cemented carbide composite. International Journal of Refractory Metals and Hard Materials. 19: (2001), p. 547–552.
  • 3. Jakobsen P. and Lohne J., Challenges of methods and approaches for estimating soil abrasivity in soft ground TBM tunnelling. Wear. 308(1–2): (2013), p. 166–173.
  • 4. Konyashin I. and Ries B., Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Part I: ASTM wear tests. International Journal of Refractory Metals and Hard Materials. 46: (2014), p. 12–19.
  • 5. Konyashin I., Ries B. and Lachmann F., Near-nano WC–Co hardmetals: Will they substitute conventional coarse-grained mining grades? International Journal of Refractory Metals and Hard Materials. 28(4): (2010), p. 489–497.
  • 6. Konyashin I., Schäfer F., Cooper R., Ries B., Mayer J. and Weirich T., Novel ultracoarse hardmetal grades with reinforced binder for mining and construction. International Journal of Refractory Metals and Hard Materials. 23(4-6): (2005), p. 225–232
  • 7. Langmaack L., The truth about soil conditioning: Dos and Donts. World Tunneling Congress. 1: (2009), p. 1–7.
  • 8. Hussainova I., Microstructure and erosive wear in ceramic-based composites. Wear. 258(1-4): (2005), p. 357–365.
  • 9. Hussainova I., Antonov M. and Zikin A., Erosive wear of advanced composites based on WC. Tribology International. 46(1): (2012), p. 254–260.
  • 10. Mannesson K., Borgh I., Borgenstam A. and Ågren J., Abnormal grain growth in cemented carbides – Experiments and simulations. International Journal of Refractory Metals and Hard Materials. 29(4): (2011), p. 488–494.
  • 11. Gille G., Szesny B., Dreyer K., van den Berg H., Schmidt J., Gestrich T. and Leitner G., Submicron and ultra grained hardmetals for microdrills and metal and cutting inserts. International Journal of Refractory Metals and Hard Materials. 20: (2002), p. 3–22.
  • 12. Yang G.-J., Gao P.-H., Li C.-X. and Li C.-J., Simultaneous strengthening and toughening effects in WC–(nanoWC–Co). Scripta Materialia. 66(10): (2012), p. 77–780.
  • 13. Liu C., Lin N., He Y., Wu C. and Jiang Y., The effects of micron WC contents on the microstructure and mechanical properties of ultrafine WC–(micron WC–Co) cemented carbides. Journal of Alloys and Compounds. 594: (2014), p. 76–81.
  • 14. Upadhyaya A., Sarathy D., Wagner G., Advances in alloy design aspects of cemented carbides. Materials & Design. 22: (2001), p. 511–517.
  • 15. Sergejev F. and Antonov M., Comparative study on indentation fracture toughness measurements of cemented carbides. Proceedings of Estonian Academia. 12(4): (2006), p. 388–398.
  • 16. ASTM, Standard Test Method for Pin Abrasion Testing. West Conshohocken: The American Society for Testing and Materials. 1(1): (2001), p. 1–8.
  • 17. Abrams H., Grain size measurement by the intercept method. Metallography. 4(1): (1971), p. 59–78.
  • 18. Li X., Liu Y., Liu B. and Zhou J., Effects of submicron WC addition on structures, kinetics and mechanical properties of functionally graded cemented carbides with coarse grains. International Journal of Refractory Metals and Hard Materials. 56: (2016), p. 132–138.
  • 19. Su C. and Su X., Impact of grain size and grain size distribution on the resistivity of metal nanocrystalline systems. Computational Materials Science. 108: (2015), p. 62–65.
  • 20. llanes L., Torres Y., Anglada M., On the fatigue crack growth behavior of WC-Co cemented carbides: kinetics description, microstructural effects and fatigue sensitivity. Acta Materialia. 50: (2002), p. 1381–2393.
  • 21. Su W., Sun Y., Wang H., Zhang X. and Ruan J., Preparation and sintering of WC–Co composite powders for coarse grained WC–8Co hardmetals. International Journal of Refractory Metals and Hard Materials. 45: (2014), p. 80–85.
  • 22. Sun Y., Su W., Yang H. and Ruan J., Effects of WC particle size on sintering behawior and mechanical properties of coarse grained WC–8Co cemented carbides fabricated by unmilled composite powders. Ceramics International. 41(10): (2015), p. 14482–14491.
  • 23. Zhang F.L., Wang C.Y. and Zhu M., Nanostructured WC/Co composite powder prepared by high energy ball milling. Scripta Materialia. 49(11): (2003), p. 1123–1128.
  • 24. Shatov A.V., Ponomarev S.S. and Firstov S.A., Fracture of WC–Ni cemented carbides with different shape of WC crystals. International Journal of Refractory Metals and Hard Materials. 26(2): (2008), p. 68–76.
  • 25. Akhtar F. and Guo S.J., Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites. Materials Characterization. 59(1): (2008), p. 84–90.
  • 26. Sigl L.S. and Exner H.E., Experimental study of the mechanics of fracture in WC-Co alloys. Metallurgical Transactions. 18A: (1987), p. 1299–1308.
  • 27. Sun L., Yang T.e., Jia C. and Xiong J., VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials. 29(2): (2011), p. 147-152.
  • 28. Wang X., Fang Z.Z. and Sohn H.Y., Grain growth during the early stage of sintering of nanosized WC–Co powder. International Journal of Refractory Metals and Hard Materials. 26(3): (2008), p. 232–241.
  • 29. Fang Z., Maheshwari P., Wang X., Sohn H.Y., Griffo A. and Riley R., An experimental study of the sintering of nanocrystalline WC–Co powders. International Journal of Refractory Metals and Hard Materials. 23(4-6): (2005), p. 249–257.
  • 30. Kim C.-S., Massa T.R. and Rohrer G.S., Modeling the relationship between microstructural features and the strength of WC–Co composites. International Journal of Refractory Metals and Hard Materials. 24(1-2): (2006), p. 89–100.
  • 31. Konyashin I., Ries B., Hlawatschek D., Zhuk Y., Mazilkin A., Straumal B., Dorn F. and Park D., Wear-resistance and hardness: Are they directly related for nanostructured hard materials? International Journal of Refractory Metals and Hard Materials. 49: (2015), p. 203–211.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-348c404f-1e34-47a3-a432-7a6dc6c29849
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.