PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing flotation of smithsonite by using 1,3,5-Triazinane-2,4,6-trithione as sulfidation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
1,3,5-Triazinane-2,4,6-trithione (TMT) was used for the first time as a sulfidation agent in the flotation of smithsonite. Results showed that 80.5% recovery rate could be obtained in the presence of TMT (5 × 10-5 mol/L) and butyl xanthate (5 × 10-4 mol/L). However, the recovery rate was only 59.4% when sodium sulfide (5 × 10-5 mol/L) was used. Micro-flotation test and contact angle measurement showed that TMT activation was better than sodium sulfide activation. Besides, the contact angle increased from 32.44° (untreated) to 89.58° (treated with TMT), which was significantly higher than 50.2° (treated with sodium sulfide). Fourier Transform Infrared spectroscopy(FT-IR) and Zeta potential test showed the chemisorption of TMT on the smithsonite surface. The results of ICP spectral detection and solution chemistry calculation revealed that Zn3TMT complex precipitates in the smithsonite pulp were formed on the mineral surface at pH 6.5. A hydrophobic film was also formed on the mineral surface after TMT treatment, and more adsorption sites were provided for butyl xanthate. Thus, the adsorption of collector was significantly enhanced.
Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
autor
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Bibliografia
  • ABKHOSHK, E., JORJANI, E., AL-HARAHSHEH, M, S., RASHCHI, F., NAAZERI, M., 2014. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy. 149, 153-167.
  • BAI, S., LI, C., FU, X., LIU, J., WEN, S., 2018. Characterization of zinc sulfide species on smithsonite surfaces during sulfidation processing: Effect of ammonia liquor. J. Ind. Eng. Chem. 61, 19-27.
  • BAI, S., YU, P., DING, Z., LI, C., XIAN, Y., WEN, S.,2020. Ammonium chloride catalyze sulfidation mechanism of smithsonite surface:Visual MINTEQ models, ToF-SIMS and DFT studies, Miner. Eng. 146, 106115.
  • BAI, X., LIU, J., WEN, S., WANG, Y., 2020. Utilization of local electrochemical impedance spectroscopy to study the attenuation law of the sulfide layer on the surface of smithsonite. Powder Technol. 373, 754-757.
  • BAI, X., LIU, J., WEN, S., WANG, Y., LIN, Y., 2020. Effect of ammonium salt on the stability of surface sulfide layer of smithsonite and its flotation performance. Appl. Surf. Sci. 514, 145851.
  • BAILEY, J, R., JASONHATFIELD, M., HENKE, K, R., KREPPS, M, K., MORRIS, J, L., TOMOTIENO, T., SIMONETTI, K, D., WALL, E, A., ATWOOD, D, A., 2001. Transition metal complexes of 2,4,6-trimercapto-1,3,5-triazine (TMT): potential precursors to nanoparticulate metal sulfides. J. Organomet. Chem. 623, 185-190.
  • CAO, Z., CHEN, X., PENG, Y., 2018. The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Miner. Eng. 119, 93-98.
  • CAO, Z., WANG, P., ZHANG, W., ZENG, X., CAO, Y., 2020. Mechanism of sodium sulfide on flotation of cyanide-depressed pyrite. T. Nonferr. Metal. SOC. 2, 484-491.
  • CECCONI, F., GHILARDI, C, A., MIDOLLINI, S., ORLANDINI, A., 2002. Organomercury derivatives of the 2,4,6-trimercaptotriazine(H3TMT). X-ray crystal structure of (HgMe)3(TMT). J. Organomet. Chem. 1, 101–104.
  • CUI, W., CHEN, J., LIA, Y., CHEN, Y., ZHAO, C., 2020. Interactions of xanthate molecule with different mineral surfaces: A comparative study of Fe, Pb and Zn sulfide and oxide minerals with coordination chemistry(Article). Miner. Eng. 159, 106565.
  • EJTEMAEI, M., GHARABAGHI, M., IRANNAJAD, M., 2014. A review of zinc oxide mineral beneficiation using flotation method. Adv. Colloid Interface Sci. 206, 68-78.
  • FENG, Q., WEN, S., BAI, X., CHANG, W., CUI, C., ZHAO, W., 2019. Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation. Miner. Eng. 137, 1-9.
  • FROST, R, L., MARTENS, W, N., WAIN, D, L., HALES, M, C., 2008. Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite. Spectrochim. Acta. A. 70, 1120-1126.
  • HU, Y., CHI, R., XU, Z., 2003. Solution chemistry study of salt-type mineral flotation systems: role of inorganic dispersants. Ind. Eng. Chem. Res. 42, 1641–1647.
  • JU, S., TANG, M., YANG, S., LI, Y., 2005. Dissolution kinetics of smithsonite ore in ammonium chloride solution. Hydrometallurgy. 80, 67-74.
  • LAN, Z., LAI, Z., ZHENG, Y., LU, J., PANG, J., NING, J., 2020. Thermochemical modification for the surface of smithsonite with sulfur and its flotation response. Miner. Eng. 150, 106271.
  • LEBEDEV, M, V., SEROV, Y, M., LVOVA, T, V., ENDO, R., MASUDA, T., SEDOVA, L, V., 2020. InP(1 0 0) surface passivation with aqueous sodium sulfide solution. Appl. Surf. SCI. 533, 147484.
  • LI, C., BAI, S., DING, Z., YU, P., WEN, S., 2019. Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption. J. Taiwan. INST. Cheme. 96, 53-62.
  • LI, Q., LI, S., WANG, K., ZHOU, Y., QUAN, Z., MENG, Y., MA, Y., ZOU, B., 2017. Structural tuning and piezoluminescence phenomenon in trithiocyanuric acid(Article). J Phys Chem C. 121, 1870-1875.
  • LIU, C., FENG, Q., ZHANG, G., MA, W., MENG, Q., CHEN, Y., 2016. Effects of lead ions on the flotation of hemimorphite using sodium oleate. Miner. Eng. 89, 163-167.
  • LIU, C., SONG, S., LI, H., AI, G., 2019. Sulfidization flotation performance of malachite in the presence of calcite. Miner. Eng. 132, 293-296.
  • LIU, C., WANG, X., YANG, S., REN, Z., LI, C., HU, Z., 2021. Utilization of polyepoxysuccinic acid as a green depressant for the flotation separation of smithsonite from calcite. Miner Eng. 168, 106933.
  • LUO, B., LUI, Q., DENG, J., YU, L., LAI, H., SONG, C., LI, S., 2019. Characterization of sulfide film on smithsonite surface during sulfidation processing and its response to flotation performance. Powder Technol. 351, 144-152.
  • LUO, Y., ZHANG, G., MAI, Q., LIU, H., LI, C., FENG, H., 2020. Flotation separation of smithsonite from calcite using depressant sodium alginate and mixed cationic/anionic collectors. Colloid. Surface. A. 586, 124227.
  • MALGHAN, S, G., 1986. Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores. Mining Metall Explor. 3, 158-163.
  • MARABINI, A, M., RINELLI, G., 1986. Flotation 01 lead-zinc oxide ores. Advances in Mineral Processlng, Proceedlngs of a SymposIUm Honoring Nathaniel Arbitor, P Somasundaran, ed. 269-288.
  • MOSTOFA, A., ZHENG, J., MAJUMDER, M., WEI, W., ZHOU, Y., WANG, S., ZHOU, Y., DENG, Z., 2021. Interfacial properties of trithiocyanuric acid functionalized cellulose nanofibers for efficient recovery of gold ions from aqueous solution. Cellulose. 28, 937-947.
  • MOSTOFA, A., ZHENG, J., MAJUMDER, M., WEI, W., ZHOU, Y., WANG, S., ZHOU, Y., DENG, Z., 2021. Interfacial properties of trithiocyanuric acid functionalized cellulose nanofibers for efficient recovery of gold ions from aqueous solution. Cellulose. 28, 937-947.
  • MUDD, G, M., JOWITT, S, M., WERNER, T, T., 2017. The world's lead-zinc mineral resources: Scarcity, data, issues and opportunities. Ore. Geol. Rev. 80, 1160-1190.
  • POKROVSKY, O, S., SCHOTT, J., 2002. Surface Chemistry and Dissolution Kinetics of Divalent Metal Carbonates. Environ. SCI. Technol. 36, 326-432.
  • POTAPOVA, E., YANG, X., WESTERSTRAND, M., GRAHN, M., HOLMGREN,A., HEDLUND, J., 2012. Interfacial properties of natural magnetite particles compared with their synthetic analogue. Miner. Eng. 36, 187-194.
  • SADOWSKI, Z., POLOWCZYK, L., 2004. Agglomerate flotation of fine oxide particles. Int. J. Miner. Process. 74, 85-90.
  • SHI, Q., FENG, Q., ZHANG, G., DENG, H., 2012. Electrokinetic properties of smithsonite and its floatability with anionic collector. Colloid. Surface. A. 410, 178-183.
  • SHI, Q., FENG, Q., ZHANG, G., DENG, H., 2012. Electrokinetic properties of smithsonite and its floatability with anionic collector. Colloids Surf. A. 410, 178–183.
  • SHI, Q., ZHANG, G., FENG, Q., DENG, H., 2013. Effect of solution chemistry on the flotation system of smithsonite and calcite. INT. J. Miner. Process. 119, 34-39.
  • WANG, L., HU, G., SUN, W., KHOSO, SA., LIU, R., ZHANG, X., 2019. Selective flotation of smithsonite from dolomite by using novel mixed collector system. T. Nonferr. Metal. SOC. 29, 1082-1089.
  • WANG, Q., ZHENG, C., ZHAN, J., HE, F., YAO, Y., ZHANG, T., HE, C., 2020. Insights into the adsorption of Pb(II) over trimercapto-s-triazine trisodium salt-modified lignin in a wide pH range. Chem. Eng. J. A. 1, 100002.
  • WU, D., MA, W., WEN, S., BAI, S., DENG, J., YIN, Q., 2017, Contribution of ammonium ions to sulfidation-flotation of smithsonite. J. Taiwan Inst Chem. E. 78, 20-26.
  • XIE, H., SUN, R., WU, J., FENG, D., GAO, L., 2020. A Case Study of Enhanced Sulfidization Flotation of Lead Oxide Ore: Influence of Depressants. Minerals. 10, 95.
  • YANG, Y., GUO, H., CHEN, L., LIU, X., GU, M., KE, X., 2019. Regional analysis of the green development level differences in Chinese mineral resource-based cities. Resources Policy. 61, 261-272.
  • YAZICI, E, Y., AHLATCI, F., YILMAZ, E., CELEP, O., DEVECI, H., 2020. Precipitation of zinc from cyanide leach solutions using Trimercapto-s-triazine (TMT). Hydrometallurgy. 191, 105206.
  • YIN, W., ZHANG, L., XIE, F., 2010. Flotation of Xinhua molybdenite using sodium sulfide as modifier. rans. Nonferrous Met. Soc. China. 20, 702-706.
  • ZENG, Y., LIU, J., LIU, J., DONG, W., HAO, J., WANG, Y., 2020. Study on Sulfide Layer Attenuation Behavior of Smithsonite During Sulfidization Flotation. Front Mater. 6.
  • ZHAO, Q., LIU, W., WEI, D., WANG, W., CUI, B., LIU, W., 2018. Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant. Miner. Eng. 115, 44-52.
  • ZHOU, H., YANG, Z., ZHANG, Y., XIE, F., LUO, X., 2021. Flotation separation of smithsonite from calcite by using flaxseed gum as depressant. Miner. Eng. 167, 106904.
  • ZHU, H., QIN, W., CHEN, C., CHAI, L., LI, L., LIU, S., ZHANG, T., 2018. Selective flotation of smithsonite, quartz and calcite using alkyl diamine ether as collector. T. Nonferr. Metal. SOC. 28, 163-168.
  • ZUO, Q., YANG, J., SHI, Y., WU, D., 2020. Activating hemimorphite using a sulfidation-flotation process with sodium sulfosalicylate as the complexing agent. J. Mater. Res. Technol. 9, 10110-10120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-348bbfbd-add3-433d-a856-49c262dbd72e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.