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1. Introduction - Asymptotic approach to 
system reliability   

In the reliability investigation of large-scale 
systems, the problem of the complexity of their 
reliability functions arises. This problem may be 
approximately solved by assuming that the number 
of system components tends to infinity and finding 
the limit reliability function of the system. This 
approach is well recognized for basic systems. 
Gnedenko [1] has solved it for series and parallel 
systems, whereas Smirnov [7] for “k out of n” 
systems. They both have found the classes of 
possible limit reliability functions of these systems. 
All current results on asymptotic approach to 
reliability of large systems with typical structures 
are partly given in [2] and [4]-[6] and completely 
presented in the monograph [3].  
In the paper these two areas considered by 
Gnedenko and Smirnov are brought together and 
some new results of investigations are showed. 
We assume that the lifetime distributions do not 
necessarily have to be concentrated on the interval 

).,0 ∞<  Then, a reliability function does not have to 
satisfy the usually demanded condition 

 ).0,(for1)( −∞∈= ttR  

It is a generalization of the usually used concept of a 
reliability function. This generalization is 
convenient in the theoretical considerations. At the 
same time, the achieved results for the generalized 
reliability functions, also hold for the usually used 
reliability function. From these agreement it follows 
that between a reliability function R(t) and a 
distribution function F(t) there exists an explicit 
correspondence given by  

 ).,(),(1)( ∞−∞∈−= ttFtR  

According to the properties of a distribution 
function, a reliability function )(tR  is non-
increasing, right-continuous, 1)( =−∞R  and 

.0)( =+∞R  
We will deal with a reliability functions of the 
forms: 
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Abstract 

The paper is concerned with mathematical methods in asymptotic approach to systems reliability analysis. The 
complexity of the reliability investigation of large-scale systems is proposed to be approximately solved by 
assuming that the number of system components tends to infinity and finding the limit reliability function of 
the system. Some general results in the form of auxiliary theorems and examples of limit reliability functions of 
homogeneous and regular series-“m out of k” systems with exponential and Weibull reliability functions of 
system components are presented. 
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where ,Nm∈ )1,0(∈λ and .Nm∈  
The Asymptotic approach to systems reliability is 
based on investigating limit distributions of a 
standardized random variable 

 nn abT /)( − ,  

where T is the lifetime of the system and 0>na , 

),( ∞−∞∈nb  are some suitably chosen numbers. 
And since  

 ),()()( nnnnn
n

n btabtaTPt
a

bT
P +=+>=>

−
R  

where Rn(t) is a reliability function of the system,  
then we assume the following definition. 

Definition 1. A reliability function ℜ(t) is called the 
limit reliability function of the system if there exist 
normalising constants 0>na , ),( ∞−∞∈nb  such 
that  

 
∞→n

lim )()( tbta nnn ℜ=+R   for  ℜ∈Ct , 

where ℜC  is the set of continuity points of ℜ. 

Hence, for sufficiently large n, we get the following 
approximate formula approximate formula  

 )/()( nnn abtt −ℜ≅R , ),( ∞−∞∈t . 

2. Reliability of series-“mn out of kn” systems  

Suppose that  

 ,,...,2,1,,...,2,1, nnij ljkiE ==  Nlk nn ∈,  

are components of a system having reliability 
functions  

 )()( tTPtR ijij >= , ),( ∞−∞∈t , 

where ijT  are independent random variables 

representing the lifetimes of ijE , having distribution 
functions  

 )()( tTPtF ijij ≤= , ),( ∞−∞∈t .  

Definition 2. A system is called regular series-
“mn out of kn” if its lifetime is given by  

 )1( +−=
nn mkTT , nn km ≤<0 , 

where )1( +− nn mkT  is the mn-th maximal order 

statistics in a sample of random variables  

 }{min
1

ij
lj

i TT
i≤≤

= , nki ,...,2,1= , 

representing the lifetimes of series subsystems of 
the system.  

The above definition means that a series-
“mn out of kn” system is not failed if and only if  at 
least nm  of its nk  series subsystems are not failed.  

Definition 3. A regular series-“mn out of kn” system 
is called homogeneous if component lifetimes ijT  
have an identical distribution function  

 ),,(),()( ∞−∞∈≤= ttTPtF ij  

where ,,...,2,,,...,2,1 nn ljki ==  

i.e. if its components ijE  have the same reliability 
function  

 ).,(),(1)( ∞−∞∈−= ttFtR  

The reliability function of the homogeneous regular 
series-“ mn out of kn” system is given by  
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or by formula 
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where ),( ∞−∞∈t , ,nnn mkm −= nk  is the 

number of series subsystems of a system and nl  is 
the number of components in series subsystems. 

3.  Examples of series-“mn out of kn” systems 
and their limit reliability functions 

It is important to notice, that the form of limit 
reliability function of homogeneous regular 
series−“mn out of kn” system depends not only on 
the reliability function of system components, but 
also on relation between mn and the number kn of 
series subsystems of the system and moreover 
between kn and the number ln of components in 
series subsystems of our system. The paper presents 
some spectacular solutions for the problem of 
possible limit reliability functions for homogeneous 
and regular series−“mn out of kn” systems with 
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Weibull or exponential reliability function of the 
system components. The proofs of presented 
lemmas can be found in [2] and [5]. 

Agreement 1. We assume the following notation for 
any positive functions )(nx and )(ny : 

 ))(()( nxony =  means that .0
)(

)(
lim =

∞→ nx

ny
n

 

If )1()( onx = and numbers α,a  are such that 
1and0,0 ≠≠≠ ααa  then we may use following 

equations:  

 ))(()(1)( nxonxe nx +±=± , (6) 

 ))(()(1))(1( nxonxnx ++=+ αα , (7)  

 ))(()())(( 1 nxonxaanxa ++=+ − αααα  (8) 

Lemma1. If   

 (i) )()(
, tn

nn

m
lkR is a reliability function of the regular  

 homogeneous series–„mn out of  kn” system  

 given by (4),  

 (ii)  )()( tmℜ  a non-degenerate reliability  

 function given by (1), 
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 (iv) ),(,0 ∞−∞∈> nn ba  are some functions. 

Then the assertion  
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is  equivalent to the assertion 
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Proof. The proof may be found in [2] and [5].  � 

Proposition 1. If components of the regular 
homogeneous regular series-“mn out of kn” system 
have exponential reliability functions 
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Justification: According to Lemma 1 it is enough to 
show that 
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what according (i) means, that (9) holds.  �  

Proposition 2. If components of the regular 
homogeneous regular series-“mn out of kn” system 
have Weibull reliability functions 
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then limit reliability functions of the system is  
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Justification: By Lemma 1 it is sufficient to show 
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Directly, from the above Proposition, it follows next 
result. 

Proposition 3. If components of the homogeneous 
regular series-“mn out of kn” have exponential 
reliability functios: 
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Lemma 2. If 
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lkR  is given by (4) a reliability function  

 of the homogeneous regular series–„mn out of kn”  

 system, 
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where ℜ0 in non-degenerate reliability function. 
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Proof: The proof may be found in [5].  

Proposition 4. If components of the regular 
homogeneous regular series-”mn out of kn” system 
have Weibull reliability functions  
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Justification: According to Lemma 2  it is sufficient 
to show that 
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From the above we conclude that (10) holds. �   

From Proposition 4 the next result follows 
immediately. 

Proposition 5. If components of the regular 
homogeneous regular series-“mn out of kn” have an 
exponential reliability functions 
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Lemma 3. If  
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Proof. The proof may be found in [5].  � 

Proposition 6. If components of the regular 
homogeneous series-“mn out of kn” system have 
Weibull reliability functions 
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From the above results the next proposition follows 
obviously.  

Proposition 7. If components of the regular 
homogeneous regular series−”mn out of kn” have 
exponential reliability functions 
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Lemma 4. If 
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Proof. The proof may be found in [5].  � 

Proposition 8. If components of the regular 
homogeneous regular series−”mn out of kn”  system 
have Weibull reliability functions: 
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Continuing  transformations (11) we get 
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From the above, using (6), we get for ),( ∞−∞∈t   
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Next Proposition follows from the above 
immediately.  

Proposition 9. If components of the regular 
homogeneous regular series−”mn out of kn”  have 
exponential reliability function: 
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and moreover 
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then limit reliability functions of the system is  
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4. Conclusion 

The paper proposes an approach to the solution of 
practically very important problem of determining 
the reliability functions of large scale systems by 
assuming that the number of system component 
tends to infinity and finding the system limit 
reliability function. This way, for sufficiently large 
systems their exact reliability functions may be 
approximated by their limit reliability functions. 
This approach gives practically important in 
everyday usage tool for reliability evaluation of 
large systems that can be met o instance in piping 
transportation systems considered in [8], where 
application of the proposed method is illustrated in 
the reliability evaluation of the port oil pipeline 
transportation system.   
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