PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantifying swarm resilience with simulated exploration of maze-like environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial swarms have the potential to provide robust, efficient solutions for a broad range of applications from assisting search and rescue operations to exploring remote planets. However, many fundamental obstacles still need to be overcome to bridge the gap between theory and application. In this characterization work, we demonstrate how a human rescuer can leverage mini‐ mal local observations of emergent swarm behavior to locate a lone survivor in a maze‐like environment. The simulated robots and rescuer have limited sensing and no communication capabilities to model a worst‐case scenario. We then explore the impact of fundamental properties at the individual robot level on the utility of the emergent behavior to direct swarm design choices. We further demonstrate the relative robustness of the simulated robotic swarm by quantifying how reasonable probabilistic failure affects the rescue time in a complex environment. These results are compared to the theo‐ retical performance of a single wall‐following robot to further demonstrate the potential benefits of utilizing robotic swarms for rescue operations.
Słowa kluczowe
Twórcy
autor
  • Colorado State University, Fort Collins, CO 80523, USA
  • Colorado State University, Fort Collins, CO 80523, USA
Bibliografia
  • [1] M. Coronese, F. Lamperti, K. Keller, F. Chiaromonte, and A. Roventini. “Evidence for sharp increase in the economic damages of extreme natural disasters,” in Proceedings of the National Academy of Sciences, vol. 116, no. 43,2019, pp. 21 450–21 455.
  • [2] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. “Swarm robotics: A review from the swarm engineering perspective,” in Swarm Intelligence, vol. 7, no. 1, 2013, pp. 1–41.
  • [3] E. Şahin. “Swarm robotics: From sources of inspiration to domains of application,” in International Workshop on Swarm Robotics. Springer,2004, pp. 10–20.
  • [4] G. Valentini, A. Antoun, M. Trabattoni, B. Wiandt,Y. Tamura, E. Hacquard, V. Trianni, and M. Dorigo.“Kilogrid: A novel experimental environment forthe kilobot robot,” in Swarm Intelligence, vol. 12,2018, pp. 245–266.
  • [5] M. L. Goc, L. H. Kim, A. Parsaei, J.‐D. Fekete, P. Dragicevic, and S. Follmer. “Zooids: Building blocks for swarm user interfaces,” in Proceedings of the 29th Annual Symposium on User Interface Software and Technology. Association for Computing Machinery, 2016, p. 97–109.
  • [6] J. Wiech and Z. Hendzel. “Overhead vision system for testing swarms and groups of wheeledrobots,” in Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 13, no. 2, Jul. 2019, pp. 15–22.
  • [7] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt. “The robotarium: A remotely accessible swarm robotics research testbed,” in IEEE International Conference on Robotics and Automation, 2017, pp. 1699–1706.
  • [8] I. Buckley and M. Egerstedt. “Infinitesimal shape‐ similarity for characterization and control of bearing‐only multirobot formations,” in IEEE Transactions on Robotics, 2021, pp. 1–15.
  • [9] R. Piotrowski, B. Maciąg, W. Makohoń, and K. Milewski. “Design of control algorithms for mobile robots in an environment with static and dynamic obstacles,” in Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 13, no. 4, July 2019, pp. 22–30. [Online]. Available: https://www.jamris.org/index.php/JAMRIS/article/view/525
  • [10] P. Walker, M. Lewis, and K. Sycara. “Characterizing human perception of emergent swarm behaviors,” in IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2016, 2016, pp. 002 436–002 441.
  • [11] D. St‐Onge, F. Levillain, E. Zibetti, and G. Beltrame. “Collective expression: How robotic swarms convey information with group motion,” in Paladyn, Journal of Behavioral Robotics, vol. 10, no. 1, 2019, pp. 418–435.
  • [12] M. Santos and M. Egerstedt. “From motions to emotions: Can the fundamental emotions be expressed in a robot swarm,” International Journal of Social Robotics, 2020.
  • [13] R. R. Murphy, J. Kravitz, S. L. Stover, and R. Shoureshi. “Mobile robots in mine rescue and recovery,” in IEEE Robotics Automation Magazine, vol. 16, no. 2, 2009, pp. 91–103.
  • [14] E. Ackerman. “Why robots can’t be counted on to find survivors in the florida building collapse,” Jul 2021. [Online]. Available: https://spectrum.ieee.org/why‐robots‐cant‐help‐find‐survivors‐in‐the‐florida‐building‐collapse
  • [15] J. Carlson, R. R. Murphy, and A. Nelson. “Follow‐up analysis of mobile robot failures,” in IEEE International Conference on Robotics and Automation, vol. 5, 2004, pp. 4987–4994.
  • [16] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma, T. Pailevanian, S.‐K. Kim, K. Otsu, J. Burdick, and A. Akbar Agha‐Mohammadi. “Autonomous spot: Long‐range autonomous exploration of extreme environments with legged locomotion,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020, pp. 2518–2525.
  • [17] E. Takane, K. Tadakuma, M. Watanabe, M. Konyo, and S. Tadokoro. “Design and control method of a planar omnidirectional crawler mechanism,” Journal of Mechanical Design, vol. 144, no. 1, July 2021.
  • [18] X. Xiao, J. Dufek, and R. R. Murphy. “Robot risk‐awareness by formal risk reasoning and plan‐ning,” in IEEE Robotics and Automation Letters, vol. 5, no. 2, 2020, pp. 2856–2863.
  • [19] M. T. Jack, S. Khuman, and K. Owa. “Spatio‐temporal patterns act as computational mechanisms governing emergent behavior in robotic swarms,” International Journal of Swarm Intelligence and Evolutionary Computation, vol. 8, no. 1, 2019.
  • [20] M. Emmons, A. A. Maciejewski, C. Anderson, and E. K. P. Chong. “Classifying environmental features from local observations of emergent swarm behavior,” in IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3, 2020, pp. 674–682.
  • [21] D. Carrillo‐Zapata, E. Milner, J. Hird, G. Tzoumas, P. J. Vardanega, M. Sooriyabandara, M. Giuliani,A. F. T. Winfield, and S. Hauert. “Mutual shaping in swarm robotics: User studies in fire and rescue, storage organization, and bridge inspection,” in Frontiers in Robotics and AI, vol. 7, no. 53, 2020.
  • [22] M. Palieri, B. Morrell, A. Thakur, K. Ebadi, J. Nash, A. Chatterjee, C. Kanellakis, L. Carlone, C. Guaragnella, and A. akbar Agha‐mohammadi. “Locus: A multi‐sensor lidar‐centric solution for high‐precision odometry and 3d mapping in real‐time,” in IEEE Robotics and Automation Letters, vol. 6, no. 2, 2021, pp. 421–428.
  • [23] N. I. Giannoccaro and T. Nishida. “Analysis of the surrounding environment using an innovative algorithm based on lidar data on a modular mobile robot,” in Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 14, no. 4, March 2021, pp. 25–34. [Online]. Available: http s://www.jamris.org/index.php/JAMRIS/article/view/574
  • [24] S. A. Kumar, J. Vanualailai, B. Sharma, and A. Prasad. “Velocity controllers for a swarm of unmanned aerial vehicles,” Journal of Industrial Information Integration, vol. 22, p. 100198, 2021.
  • [25] E. R. Hunt, C. B. Cullen, and S. Hauert. “Value at Risk Strategies for Robot Swarms in Hazardous Environments,” in Unmanned Systems Technology XXIII, H. G. Nguyen, P. L. Muench, and B. K. Skibba, Eds., vol. 11758, International Society for Optics and Photonics. SPIE, 2021, pp. 158–177. [Online]. Available: https://doi.org/10.1117/12.2585760
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-348703ba-fb25-423c-bd55-b68bdb59841d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.