PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A refractive index sensor based on micro-nano fiber with chirped fiber Bragg grating embedded for a microfluidic chip

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A refractive index (RI) sensor based on micro-nano fiber (MN-fiber) with chirped fiber Bragg grating (CFBG) Fabry–Perot cavity (FP-cavity) for a microfluidic chip has been proposed. A single-mode fiber is drawn by hydrogen flame heading come into MN-fiber. Two CFBGs are written into this MN-fiber by the ultraviolet (UV) laser mask exposure method. One is at the tapered region, another is at the micro-nano region. Then a micro-nano fiber with chirped fiber Bragg grating (MN-CFBGs) FP-cavity sensor is formed. The Bragg reflection wavelengths of two CFBGs are 1620 nm, 3-dB bandwidth are above 50 nm. The reflectance of two CFBGs are 70% and 99%, respectively. The effects of reflectivity and bandwidth of the CFBGs FP-cavity, diameter and length of MN-fiber with this sensor’s optical properties are analysed is and discussed. This sensor is embedded in a microfluidic chip and the MN-fiber region is immersion microfluid in different channels. The experimental results show that refractive index sensitivity of the sensor is –986 nm/refractive index unit (RIU), and the signal of the sensor has little noise. The CFBG-FP sensor not only has high sensitivity and lager measurement range, but also high contrast resonance signal and stability.
Czasopismo
Rocznik
Strony
633--642
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • School of Electronic Engineering, Nanjing Xiao Zhuang University, Nanjing, China, 211171
  • School of Computer and Electronic Information /School of Artificial Intelligence, Nanjing Normal University, Nanjing, China, 210023
autor
  • School of Electronic Engineering, Nanjing Xiao Zhuang University, Nanjing, China, 211171
autor
  • School of Electronic Engineering, Nanjing Xiao Zhuang University, Nanjing, China, 211171
Bibliografia
  • [1] TAKAHASHI N., YOSHIMURA K., TAKAHASHI S., IMAMURA K., Development of an optical fiber hydrophone with fiber Bragg grating, Ultrasonics 38(1-8), 2000: 581-585. https://doi.org/10.1016/S0041-624X(99)00105-5
  • [2] JIANG L., YANG J., WANG S., LI B., WANG M., Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity, Optics Letters 36(19), 2011: 3753-3755. https://doi.org/10.1364/OL.36.003753
  • [3] VARGAS-RODRIGUEZ E., GUZMAN-CHAVEZ A.D., BAEZA-SERRATO R., GARCIA-RAMIREZ M.A., Optical fiber FP sensor for simultaneous measurement of refractive index and temperature based on the empirical mode decomposition algorithm, Sensors (Basel) 20(3), 2020: 664. https://doi.org/10.3390/s20030664
  • [4] YILMAZ G., KARLIK S.E., A distributed optical fiber sensor for temperature detection in power cables, Sensors and Actuators A 125(2), 2006: 148-155. https://doi.org/10.1016/j.sna.2005.06.024
  • [5] XIE Z., YAN H., ZHANG H., ZHAO X., HAN D., Cantilever deflection optical fiber sensor based on a chirped fiber grating Fabry-Perot cavity, Applied Optics 60(27), 2021: 8384-8389. https://doi.org/10.1364/AO.434672
  • [6] MA G.M., ZHOU H.Y., ZHANG M., LI C.R., YIN Y., WU Y.Y., A high sensitivity optical fiber sensor for GIS partial discharge detection, IEEE Sensors Journal 19(20), 2019: 9235-9243. https://doi.org/10.1109/JSEN.2019.2925848
  • [7] CENNAMO N., ZENI L., Polymer optical fibers for sensing, Macromolecular Symposia 389(1), 2020: 1900074. https://doi.org/10.1002/masy.201900074
  • [8] JIANG X., TONG L., VIENNE G., GUO X., TSAO A., YANG Q., YANG D., Demonstration of optical microfiber knot resonators, Applied Physics Letters 88(22), 2006: 223501. https://doi.org/10.1063/1.2207986
  • [9] SAMAVATI Z., SAMAVATI A., ISMAIL A.F., OTHMAN M.H.D., RAHMAN M.A., Comprehensive investigation of evanescent wave optical fiber refractive index sensor coated with ZnO nanoparticles, Optical Fiber Technology 52, 2019: 101976. https://doi.org/10.1016/j.yofte.2019.101976
  • [10] ZHANG L., LOU J., TONG L., Micro/nanofiber optical sensors, Photonic Sensors 1(1), 2011: 31-42. https://doi.org/10.1007/s13320-010-0022-z
  • [11] STERN L., DESIATOV B., GOYKHMAN I., LEVY U., Nanoscale light-matter interactions in atomic cladding waveguides, Nature Communications 4, 2013: 1548. https://doi.org/10.1038/ncomms2554
  • [12] QI Y., ZHANG J., FENG Q., ZHANG X., LIU Y., HAN Y., A novel high sensitivity refractive index sensor based on multi-core micro/nano fiber, Photonic Sensors 9(3), 2019: 197-204. https://doi.org/10.1007/s13320-019-0554-9
  • [13] CAI L., PAN J., ZHAO Y., WANG J., XIAO S., Whispering gallery mode optical microresonators: Structures and sensing applications, physica status solidi (a) 217(6), 2020: 1900825. https://doi.org/10.1002/pssa.201900825
  • [14] ZHANG J., SUN Q., LIANG R., JIA W., LI X., WO J., LIU D., SHUM P.P., Microfiber Fabry–Perot interferometer for dual-parameter sensing, Journal of Lightwave Technology 31(10), 2013: 1608-1615. https://doi.org/10.1109/JLT.2013.2252145
  • [15] BAG S.K., WAN M., SINHA R.K., VARSHNEY S.K., Design and characterization of surface relief grating on etched multimode optical fiber for refractive index sensing, Sensors and Actuators A 303, 2020: 111836. https://doi.org/10.1016/j.sna.2020.111836
  • [16] YAN H.T., LIU Q., MING Y., LUO W., CHEN Y., LU Y.Q., Metallic grating on a D-shaped fiber for refractive index sensing, IEEE Photonics Journal 5(5), 2013: 4800706. https://doi.org/10.1109/JPHOT.2013.2284244
  • [17] LIU Y., PENG W., Fiber-optic surface plasmon resonance sensors and biochemical applications: A review, Journal of Lightwave Technology 39(12), 2021: 3781-3791. https://doi.org/10.1109/JLT.2020.3045068
  • [18] LI D.Y., ZHANG H., LI Z., ZHOU L.W., ZHANG M.D., PU X.Y., SUN Y.Z., LIU H., ZHANG Y.X., High sensitivity pH sensing by using a ring resonator laser integrated into a microfluidic chip, Optics Express 30(3), 2022: 4106-4116. https://doi.org/10.1364/OE.449943
  • [19] SHEN C., LIU D., LIAN X., LANG T., ZHAO C., SEMENOVA Y., ALBERT J., Microfluidic flow direction and rate vector sensor based on a partially gold-coated TFBG, Optics Letters 45(10), 2020: 2776-2779. https://doi.org/10.1364/OL.392511
  • [20] LIU I.C., CHEN P.C., CHAU L.K., CHANG G.E., Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing, Optics Express 26(1), 2018: 273-283. https://doi.org/10.1364/OE.26.000273
  • [21] SEOW Y.C., LIM S.P., KHOO B.C., LEE H.P., An optofluidic refractive index sensor based on partial refraction, Sensors and Actuators B 147(2), 2010: 607-611. https://doi.org/10.1016/j.snb.2010.03.076
  • [22] WO J., WANG G., CUI Y., SUN Q., LIANG R., SHUM P.P., LIU D., Refractive index sensor using microfiber-based Mach-Zehnder interferometer, Optics Letters 37(1), 2012: 67-69. https://doi.org/10.1364/OL.37.000067
  • [23] LI P., YAN H., XIE Z., ZHAO X., HAN D., A bandwidth response humidity sensor with micro-nano fibre Bragg grating, Optical Fiber Technology 53, 2019: 101998. https://doi.org/10.1016/j.yofte.2019.101998
  • [24] LI J., SHEN X., SUN L.P., GUAN B.O., Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure, Optics Express 21(10), 2013: 12111-12121. https://doi.org/10.1364/OE.21.012111
  • [25] XU Y., WU L., ANG L.K., Surface exciton polaritons: A promising mechanism for refractive-index sensing, Physical Review Applied 12, 2019: 024029. https://doi.org/10.1103/PhysRevApplied.12.024029
  • [26] ALBERT J., SHAO L.Y., CAUCHETEUR C., Tilted fiber Bragg grating sensors, Laser & Photonics Reviews 7(1), 2013: 83-108. https://doi.org/10.1002/lpor.201100039
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-348211a7-b505-4a26-a6f7-376495445a16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.