Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
A reconfigurable and tunable multi-tap bandpass microwave photonic filter based on a hybrid-gain-assisted multi-wavelength fiber ring laser (HMFRL) is proposed and experimentally demonstrated. The HMFRL containing a hybrid gain medium and a high birefringence fiber loop mirror serves as the multiple taps generator for the microwave photonic filter. In order to realize a bandpass filter, the multiple taps are phase modulated, then the modulated signal is launched into a coil of dispersion compensating fiber to introduce different time delays for each tap. As a result, a bandpass response is obtained at the output of a high speeding photodetector. By adjusting the bias of the semiconductor optical amplifier from 344 to 450 mA, the number of multiple taps can be increased without optical signal-to-noise ratio degradation. Thus, a multi-tap bandpass microwave photonic filter with bandwidth reconfiguring from 449 to 274 MHz is achieved. In addition, by changing the length of polarization maintaining fiber in the high birefringence fiber loop mirror, the wavelength spacing of the multiple taps can be adjusted, making the bandpass microwave photonic filter’s free spectral range tunable.
Czasopismo
Rocznik
Tom
Strony
499--507
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Institute of Science, Chongqing University of Technology, Chongqing 400054, P.R. China
autor
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
autor
- Institute of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, P.R. China
autor
- Institute of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, P.R. China
autor
- Institute of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, P.R. China
Bibliografia
- [1] YAO J., Photonics to the rescue: a fresh look at microwave photonic filters, IEEE Microwave Magazine 16(8), 2015, pp. 46–60, DOI: 10.1109/MMM.2015.2441594.
- [2] MINASIAN R.A., CHAN E.H.W., YI X., Microwave photonic signal processing, Optics Express 21(19), 2013, pp. 22918–22936, DOI: 10.1364/OE.21.022918.
- [3] CAPMANY J., MORA J., GASULLA I., SANCHO J., LLORET J., SALES S., Microwave photonic signal processing, Journal of Lightwave Technology 31(4), 2013, pp. 571–586.
- [4] SUN W., WANG S., ZHONG X., LIU J., WANG W., TONG Y., CHEN W., YUAN H., YU L., ZHU N., Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters, Optics Communications 373, 2016, pp. 59–64, DOI: 10.1016/j.optcom.2015.09.110.
- [5] ABREU-AFONSO J., DIEZ A., CRUZ J.L., ANDRES M.V., Continuously tunable microwave photonic filter using a multiwavelength fiber laser, IEEE Photonics Technology Letters 24(23), 2012, pp. 2129–2131, DOI: 10.1109/LPT.2012.2222877.
- [6] XU R., ZHANG X., HU J., XIA L., Single-passband microwave photonic filter based on a self-seeded multiwavelength Brillouin-erbium fiber laser, Optics Communications 339, 2015, pp. 74–77, DOI: 10.1016/j.optcom.2014.11.063.
- [7] CAPMANY J., PASTOR D., ORTEGA B., New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays, IEEE Transactions on Microwave Theory and Techniques 47(7), 1999, pp. 1321–1326, DOI: 10.1109/22.775473.
- [8] WU R., CHEN H., ZHANG S., FU H., LUO Z., ZHANG L., ZHAO M., XU H., CAI Z., Tunable and selectable multipassband microwave photonic filter utilizing reflective and cascaded fiber Mach–Zehnder interferometers, Journal of Lightwave Technology 35(13), 2017, pp. 2660–2668.
- [9] JIANG Y., SHUM P.P., ZU P., ZHOU J., BAI G., XU J., ZHOU Z., LI H., WANG S., A selectable multiband bandpass microwave photonic filter, IEEE Photonics Journal 5(3), 2013, article ID 5500509, DOI: 10.1109/JPHOT.2013.2264663.
- [10] GE J., FOK M.P., Passband switchable microwave photonic multiband filter, Scientific Reports 5, 2015, article ID 15882, DOI: 10.1038/srep15882.
- [11] ZHOU J., FU S., LUAN F., WONG J.H., ADITYA S., SHUM P.P., LEE K.E.K., Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry–Pérot filter-based multi-wavelength tunable laser, Journal of Lightwave Technology 29(22), 2011, pp. 3381–3386.
- [12] CAO Y., LI F., FENG X., LU C., GUAN B.-O., WAI P.K.A., Investigation of microwave photonic filter based on multiple longitudinal modes fiber laser source, Optical Fiber Technology 23, 2015, pp. 122 –128, DOI: 10.1016/j.yofte.2015.03.004.
- [13] VIDAL B., PALACI J., CAPMANY J., Reconfigurable photonic microwave filter based on four-wave mixing, IEEE Photonics Journal 4(3), 2012, pp. 759–764, DOI: 10.1109/JPHOT.2012.2197821.
- [14] CAO Y., XU D., CHEN L., TONG Z., YANG J., Widely tunable microwave photonic filter based on four -wave mixing, Optical Engineering 56(2), 2017, article ID 026110, DOI: 10.1117/1.OE.56.2.026110.
- [15] LUO Z., ZHONG W.-D., CAI Z., YE C., WEN Y.J., High-performance SOA-based multiwavelength fiber lasers incorporating a novel double-pass waveguide-based MZI, Applied Physics B 96(1), 2009, pp. 29–38, DOI: 10.1007/s00340-009-3538-4.
- [16] AHMAD H., SULAIMAN A.H., SHAHI S., HARUN S.W., SOA-based multi-wavelength laser using fiber Bragg gratings, Laser Physics 19, 2009, pp. 1002–1005, DOI: 10.1134/S1054660X09050193.
- [17] AHMAD H., THAMBIRATNAM K., SULAIMAN A.H., TAMCHEK N., HARUN S.W., SOA-based quad-wavelength ring laser, Laser Physics Letters 5(10), 2008, pp. 726–729, DOI: 10.1002/lapl.200810057.
- [18] SULAIMAN A.H., ABU BAKAR M.H., HITAM S., MAHDI M.A., YUSOFF N.M., Multiwavelength SOA fiber ring laser based on bidirectional Lyot filter, 2015 1st International Conference on Telematics and Future Generation Networks (TAFGEN), 2015, pp. 95–98, DOI: 10.1109/TAFGEN.2015.7289584.
- [19] SEUNGMIN LEE, YOUNG BO SHIM, YOUNG-GEUN HAN, Continuously tunable microwave photonic filter based on a wavelength-spacing-tunable multiwavelength laser, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016, pp. 1–3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3481577a-f1cd-4e2d-8578-e0a096a0fe0f