Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoridesubstituted apatite properties. Methods: For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called “rapid sintering” and “slow sintering”. Physicochemical properties of the obtained materials were analyzed using infrared spectroscopy, scanning electron microscopy with energy dispersive spectrometry, X-ray diffraction, and mercury intrusion porosimetry. Cytotoxicity of materials was assessed using MTT test. Results: Sintering conditions significantly influenced some porosity parameters of the materials. The samples subjected to “rapid sintering” showed a larger total pore area and mercury intrusion volume, while the samples subjected to “slow sintering” showed higher average pore diameter. Other porosity parameters did not differ significantly between the tested materials. The crystalline phases and chemical compositions of both materials were the same. Both materials appeared to be non-toxic since their extracts did not caused reduction in the viability of MC3T3-E1 cells compared to control cells and the results obtained were similar for both materials. Conclusions: Sintering is an important step in the apatite synthesis process. The way apatite is sintered is a factor that influences its physicochemical properties. The study performed on fluoride-substituted apatite showed that sintering conditions influenced some porosity parameters but had no effect on composition, chemical structure or crystalline phase. The cytotoxicity of both materials was at the same level, indicating that both were non-toxic.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
183--191
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland.
autor
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland.
autor
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Lublin, Poland.
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland.
autor
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland.
Bibliografia
- [1] BELAMRI D., HARABI A., KARBOUAA N., BENYAHIA N., The effect of KF on the structural evolution of natural hydroxyapatite during conventional and microwave sintering, Ceram. Int., 2020, 46 (1), 1189–1194.
- [2] BORKOWSKI L., BELCARZ A., PRZEKORA A., GINALSKA G., Production Method for Biocompatible Implant Material, Polish Patent no. 235803, 6 October 2020.
- [3] BORKOWSKI L., PRZEKORA A., BELCARZ A., PALKA K., JÓZEFACIUK G., LÜBEK T., JOJCZUK M., NOGALSKI A., GINALSKA G., Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential, Mater Sci. Eng. C, 2020, 116, 111211.
- [4] CHAARI K., AYED F.B., BOUAZIZ J., BOUZOUITA K., Elaboration and characterization of fluorapatite ceramic with controlled porosity, Materials Chemistry and Physics, 2009, 113 (1), 219–226.
- [5] EL-GENDY N.S., EL-SALAMONY R.A., YOUNIS S.A., Green synthesis of fluorapatite from waste animal bones and the photo-catalytic degradation activity of a new ZnO/green biocatalyst nano-composite for removal of chlorophenols, J. Water Process Eng., 2016, 12, 8–19.
- [6] ETOK S.E., VALSAMI-JONES E., WESS T.J., HILLER J.C., MAXWELL C.A., ROGERS K.D., MANNING D.A.C., WHITE M.L., LOPEZ-CAPEL E., COLLINS M.J., BUCKLEY M., PENKMAN K.E.H., WOODGATE S.L., Structural and chemical changes of thermally treated bone apatite, J. Mater Sci., 2007, 42 (23), 9807–9816.
- [7] FATHI M.H., ZAHRANI E.M., Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying, J. Alloys Compd., 2009, 475 (1–2), 408–414.
- [8] FREUND F., KNOBEL R.M., Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy, J. Chem. Soc. Dalton Trans., 1977, 11, 1136–1140.
- [9] GHIASI B., SEFIDBAKHT Y., MOZAFFARI-JOVIN S., GHAREHCHELOO B., MEHRARYA M., KHODADADI A., REZAEI M., RANAEI SIADA S.O., USKOKOVIĆ V., Hydroxyapatite as a biomateriał – a gift that keeps on giving, Drug. Dev. Ind. Pharm., 2020, 46 (7), 1035–1062.
- [10] HAMMERLI J., HERMANN J., TOLLAN P., NAAB F., Measuring in situ CO2 and H2O in apatite via ATR-FTIR, Contrib. Mineral Petrol., 2021, 176, 1–20.
- [11] KLIMUSZKO E., SIERPIŃSKA T., GOŁĘBIEWSKA M., Construction of enamel and its resistance to pathological factors. A literaturę review, Prosthodontics, 2015, 65 (3), 241–251.
- [12] KOKUBO T., Bioceramics and their Clinical Applications, Woodhead Publishing Series in Biomaterials, CRC Press, 2008.
- [13] KURMAEV E.Z., MATSUYA S., SHIN S., WATANABE M., EGUCHI R., ISHIWATA Y., TAKEUCHI T., IWAMI M., Observation of fluorapatite formation under hydrolysis of tetracalcium phosphate in the presence of KF by means of soft X-ray emission and absorption spectroscopy, J. Mater Sci.-Mater M., 2002, 13 (1), 33–36.
- [14] LASKA A., Biomateriały stosowane w inżynierii tkankowej do regeneracji tkanek, Zeszyty Naukowe Towarzystwa Doktorantów Uniwersytetu Jagiellońskiego, Nauki Ścisłe, 2017, 14, 187–196.
- [15] LEGEROS R.Z., Biodegradation and bioresorption of calcium phosphate ceramics, Clin. Mater, 1993, 14 (1), 65–88.
- [16] MALINA D., BIERNAT K., SOBCZAK-KUPIEC A., Studies on sintering process of synthetic hydroxyapatite, Acta Biochim. Pol., 2013, 60 (4), 851–855.
- [17] NAKADE O., KOYAMA H., ARAI J., ARIJI H., TAKADA J., KAKU T., Stimulation by low concentrations of fluoride of the proliferation and alkaline phosphatase activity of human dental pulp cells in vitro, Arch. Oral Biol., 1999, 44, 89–92.
- [18] OBADA D.O., DAUDA E.T., ABIFARIN J.K., DODOO-ARHIN D., BANSOD N.D., Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature, Mater Chem. Phys., 2020, 239, 122099.
- [19] OBADA D.O., IDRIS N., IDRIS M., DAN-ASABE B., SALAMI K.A., OYEDEJI A.N., CSAKI S., SOWUNMI A.R., ABOLADE S.A., AKINPELU S.B., AKANDE A., The effect of sintering dwell time on the physicochemical properties and hardness of hydroxyapatite with insights from ab initio calculations, CSCEE, 2024, 9, 100648.
- [20] OOI C.Y., HAMDI M., RAMESH S., Properties of hydroxyapatite produced by annealing of bovine bone, Ceram. Int., 2007, 33 (7), 1171–1177.
- [21] PAJOR K., PAJCHEL L., KOLMAS J., Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology – A Review, Materials, 2019, 12 (17), 2683.
- [22] POOVENDRAN K., WILSON K.J., Amalgamation and characterization of porous hydroxyapatite bio ceramics at two various temperatures, Mater Sci. Semicond. Process, 2019, 100, 255–261.
- [23] PROKOPIEV O., SEVOSTIANOV I., Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature, Mater Sci. Eng. A, 2006, 431 (1–2), 218–227.
- [24] PRZEKORA A., CZECHOWSKA J., PIJOCHA D., ŚLÓSARCZYK A., GINALSKA G., Do novel cement-type biomaterials reveal ion reactivity that affects cell viability in vitro?, Open Life Sci., 2014, 9 (3), 277–289.
- [25] REY C., Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro, Cells and Mater, 1995, 5, 345–356.
- [26] RINTOUL L., WENTRUP-BYRNE E., SUZUKI S., GRØNDAHL L., FT-IR spectroscopy of fluoro-substituted hydroxyapatite: strengths and limitations, J. Mater Sci. Mater Med., 2007, 18, 1701–1709.
- [27] ŚLOSARCZYK A., Biomateriały ceramiczne, Biocybernetyka i Inżynieria Biomedyczna, [in:] S. Blazewicz, L. Stoch, Biomateriały, AOW EXIT, 2003.
- [28] ŚLOSARCZYK A., SZYMURA-OLEKSIAK J., MYCEK B., The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants, Biomaterials, 2000, 21, 1215–1221.
- [29] Standard ISO 10993-5:2009. Biological Evaluation of Medical Devices – Part 5: Tests for In Vitro Cytotoxicity; International Organization for Standardization: Geneva, Switzerland, 2009.
- [30] SZCZEPKOWSKA M., ŁUCZUK M., Porous materials for the medical applications, Syst. Wspomagania Inżynierii Prod., 2014, 2, 231–239.
- [31] TACKER R.C., Hydroxyl ordering in igneous apatite, Am. Min., 2004, 89 (10), 1411–1421.
- [32] TAHERI M.M., KADIR M.R.A., SHOKUHFAR T., HAMLEKHAN A., ASSADIAN M., SHIRDAR M.R., MIRJALILI A., Surfactantassisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods, Ceram. Int., 2015, 41 (8), 9867–9872.
- [33] TELESIŃSKI A., ŚNIOSZEK M., Bioindykatory zanieczyszczenia środowiska naturalnego fluorem, Bromatol. Chem. Toksyk, 2009, 42 (4), 1148–1145.
- [34] TREDWIN C.J., YOUNG A.M., ABOU NEEL E.A., GEORGIOU G., KNOWLES J.C., Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallisation, J. Mater Sci.- Mater M., 2014, 25 (1), 47–53.
- [35] TRZASKOWSKA M., VIVCHARENKO V., PRZEKORA A., The impact of hydroxyapatite sintering temperature on its microstructural, mechanical, and biological properties, I. J. Mol. Sci., 2023, 24 (6), 5083.
- [36] TSURUGA E., TAKITA H., ITOH H., WAKISAKA Y., KUBOKI Y., Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis, J Biochem, 1997, 121 (2), 317–324.
- [37] WANG A.J., LU Y.P., ZHU R.F., LI S.T., XIAO G.Y., ZHAO G.F., XU W.H., Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres, J. Biomed. Mater Res. A., 2008, 87 (2), 557–562.
- [38] WIRTU Y.D., MELAK F., YITBAREK M., ASTATKIE H., Aluminum coated natural zeolite for water defluoridation: a mechanistic insight, Groundw. Sustain. Dev., 2021, 12, 100525.
- [39] XU Z., QIAN G., FENG M., Using polyacrylamide to control particle size and synthesize porous nano hydroxyapatite, Results Phys., 2020, 16, 102991.
- [40] YOON B.H., KIM H.W., LEE S.H., BAE C.J., KOH Y.H., KONG Y.M., KIM H.E., Stability and cellular responses to fluorapatite fluorapatite collagen composites, Biomaterials, 2005, 26 (16), 2957–2963.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-347bc913-5148-43d8-9290-4ad9fad31b4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.