PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of temperature and nitrogen pressure on the test without active gases for high-temperature proton exchange membrane fuel cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-Temperature Proton-Exchange Membrane Fuel Cells (HT-PEMFCs) are a candidate for electrical energy supply devices in more and more applications. Most notably in the aeronautic industry. Before any use, an HT-PEMFC is preheated and after that supplied with its active gases. Only at this state, the diagnostics can be performed. A method of testing not requiring a complete start-up would be beneficial for many reasons. This article describes an extended version of the charging and discharging diagnostic method of HT-PEMFCs with no active gases. This extended approach is named “Test Without Active Gases” (TWAG). This paper presents original research on the influence of nitrogen temperature and pressure on the HT-PEMFC response to charging and discharging. A lumped-element model of an HT-PEMFC is also presented. A numerical result of using this model to recreate an experimentally obtained curve is also presented.
Rocznik
Strony
571--583
Opis fizyczny
Bibliogr. 27 poz. fig., tab.
Twórcy
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Team GENESYS, Laboratioire LAPLACE, 118 Rte de Narbonne, 31077 Toulouse, France
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Dicks L., Rand D.A.J., Fuel Cell Systems Explained, John Wiley & Sons (2018).
  • [2] Seventh Edition Fuel Cell Handbook, U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory (2004).
  • [3] O’Hayre R., Cha S.W., Colella W., Prinz F.B., Fuel Cell Fundamentals, John Wiley & Sons (2016).
  • [4] Hacker V., Mitsushima S., Fuel Cells and Hydrogen: From Fundamentals to Applied Research, Elsevier (2018).
  • [5] Conway B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media (2013).
  • [6] Spyker R.L., Nelms R.M., Classical equivalent circuit parameters for a double-layer capacitor, IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 3, pp. 829–836 (2000),DOI: 10.1109/7.869502.
  • [7] Choi W., Enjeti P.N., Howze J.W., Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, USA, pp. 355–361 (2004).
  • [8] Boscaino V., Capponi G., Livreri P., Marino F., Fuel cell modelling for power supply systems design,11th Workshop on Control and Modeling for Power Electronics, Zurich, Switzerland, pp. 1–4 (2008).
  • [9] Kang T., Kim M., Kim J., Sohn Y.J., Numerical modeling of the degradation rate for membrane electrode assemblies in high temperature proton exchange membrane fuel cells and analyzing operational effects of the degradation, International Journal of Hydrogen Energy, vol. 40, no. 15, pp. 5444–5455 (2015), DOI: 10.1016/j.ijhydene.2015.01.185.
  • [10] Page S.C., Anbuky A.H., Krumdieck S.P., Brouwer J., Test Method and Equivalent Circuit Modeling of a PEM Fuel Cell in a Passive State, IEEE Transactions on Energy Conversion, vol. 22, no. 3,pp. 764–773 (2007), DOI: 10.1109/TEC.2007.895857.
  • [11] Krumdieck S.P., Anbuky A., Testing Procedure for Passive Fuel Cell State of Health, Proceedings of the Australian Universities Power Engineering Conference, Hobart, Australia, pp. 25–28 (2004).
  • [12] Faranda R., Gallina M., Son D.T., A new simplified model of Double-Layer Capacitors, International Conference on Clean Electrical Power, Capri, Italy, pp. 706–710 (2007).
  • [13] Faranda R., A new parameters identification procedure for simplified double layer capacitor twobranch model, Electric Power Systems Research, vol. 80, no. 4, pp. 363–371 (2009), DOI: 10.1016/j.epsr.2009.10.024.
  • [14] Shamardinaa O., Chertovicha A., Kulikovskyb A.A., Khokhlov A.R., A simple model of a hightemperature PEM fuel cell, International Journal of Hydrogen Energy, vol. 35, no. 18, pp. 9954–9962 (2009), DOI: 10.1016/j.ijhydene.2009.11.012.
  • [15] Zhang J., High temperature PEM fuel cells, Journal of Power Sources, vol. 160, no. 2, pp. 872–891 (2006), DOI: 10.1016/j.jpowsour.2006.05.034.
  • [16] Araya S.S., A comprehensive review of PBI-based high temperature PEM fuel cells, International Journal of Hydrogen Energy, vol. 41, no. 46, pp. 21310–21344 (2016), DOI: 10.1016/j.ijhydene.2016.09.024.
  • [17] Zhang C., Liu Z., Zhou W., Chan S.H., Wang Y., Dynamic performance of a high-temperature PEM fuel cell – An experimental study, Energy, vol. 90, no. 2, pp. 1949–1955 (2015), DOI: 10.1016/ j.energy.2015.07.026.
  • [18] Iranzo A., Munoz M., Rosa F., Pino J., Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation, International Journal of Hydrogen Energy, vol. 35, no. 20, pp. 11533–11550 (2010), DOI: 10.1016/j.ijhydene.2010.04.129.
  • [19] Baschuk J.J., Li X., A general formulation for a mathematical PEM fuel cell model, Journal of Power Sources, vol. 142, no. 1, pp. 134–153 (2005), DOI: 10.1016/j.jpowsour.2004.09.027.
  • [20] Abdin Z., Webb C.J., Mac E., Gray A., PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters, Energy, vol. 116, no. 1, pp. 1131–1144 (2016), DOI: 10.1016/j.energy.2016.10.033.
  • [21] Meng H., A PEM fuel cell model for cold-start simulations, Journal of Power Sources, vol. 178, no. 1, pp. 141–150 (2008), DOI: 10.1016/j.jpowsour.2007.12.035. Vol. 72 (2023) Influence of temperature and nitrogen pressure on the test without active gases 583
  • [22] Fouquet N., Doulet C., Nouillant C., Dauphin-Tanguy G., Ould-Bouamama B., Model based PEM fuel cell state-of-health monitoring via ac impedance measurements, Journal of Power Sources, vol. 159, no. 2, pp. 905–913 (2006), DOI: 10.1016/j.jpowsour.2005.11.035.
  • [23] Chevalier S., Auvity B., Olivier J.C., Josset C., Trichet D., Machmoum M., Detection of Cells State-of Health in PEM Fuel Cell Stack Using EIS Measurements Coupled with Multiphysics Modeling, Fuel Cells, vol. 14, no. 3, pp. 416–429 (2014), DOI: 10.1002/fuce.201300209.
  • [24] Bethoux O., Hilairet M., Azib T., A new on-line state-of-health monitoring technique dedicated to PEM fuel cell, 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, pp. 2745–2750 (2009).
  • [25] Zhou B., Huang W., Zong Y., Sobiesiak A., Water and pressure effects on a single PEM fuel cell, Journal of Power Sources, vol. 155, no. 2, pp. 190–202 (2006), DOI: 10.1016/j.jpowsour.2005.04.027.
  • [26] Barbir F., Gorgun H., Wang X., Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells, Journal of Power Sources, vol. 141, no. 1, pp. 96–101 (2005),DOI: 10.1016/j.jpowsour.2004.08.055.
  • [27] Khaleel M.M., Adzman M.R., Zali S.M., An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM, Energies, vol. 14, no. 21, pp. 7073 (2021),DOI: 10.3390/en14217073.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34791402-51d4-4398-a550-6aed4ac0c9f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.