PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance and emission modelling and simulation of marine diesel engines using publicly available engine data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To analyse the behaviour of marine diesel engines in unsteady states for different purposes, for example to determine the fuel consumption or emissions level, to adjust the control strategy, to manage the maintenance, etc., a goal-based mathematical model that can be easily implemented for simulation is necessary. Such a model usually requires a wide range of operating data, measured on a test stand. This is a time-consuming process with high costs and the relevant data are not available publicly for a selected engine. The present paper delivers a rapid and relatively simple method for preparing a simulation model of a given marine diesel engine, based only on the widely available data in the project guides indicated for steady state conditions. After establishing the framework of the mathematical model, it describes how the parameters of the model can be adjusted for the simulation model and how the results can be verified as well. Conceptually, this is a trial and error method, but the presented case example makes clear how the parameters can be selected to reduce the number of trials and quickly determine the model parameters. The necessary descriptions are given through a case study, which is the MAN-B&W 8S65ME-C8 marine diesel engine. The engine is assumed to be connected to a constant pitch propeller. The presented mathematical model is a mean-value zero-dimensional type with seven state variables. The other variables of the engine are determined based on the state independent variables and the input value, which is the fuel rate. The paper can be used as a guideline to prepare a convenient mathematical model for simulation, with the minimum publicly available data.
Rocznik
Tom
Strony
63--87
Opis fizyczny
Bibliogr. 76 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Wang F., Pulsation Signals Analysis of Turbocharger Turbine Blades Based on Optimal EEMD And TEO, Polish Maritime Research 3 (103) 2019 Vol. 26; pp. 78-86 10.2478/pomr-2019-0048.
  • 2. Ghaemi M. H., Zeraatgar H., Analysis of Hull, Propeller and Engine Interactions in Regular Waves by a Combination of Experiment and Simulation, Journal of Marine Science and Technology, 26, pages 257–272, 2021.
  • 3. Gu X., Jiang G., Guo Z., Ding S., Design and Experiment of Low-Pressure Gas Supply System for Dual Fuel Engine, Polish Maritime Research 2 (106) 2020 Vol. 27; pp. 76-84 10.2478/pomr-2020-0029.
  • 4. Cepowski T., Regression Formulas for The Estimation of Engine Total Power for Tankers, Container Ships and Bulk Carriers on the Basis of Cargo Capacity and Design Speed, Polish Maritime Research, 1 (101) 2019 Vol. 26; pp. 82-94 10.2478/pomr-2019-0010
  • 5. Yang Z., Tan Q., Geng P., Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel, Polish Maritime Research, 1 (101) 2019 Vol. 26; pp. 153-161 10.2478/pomr-2019-0017
  • 6. Zeraatgar H., Ghaemi M. H., The Analysis of Overall Ship Fuel Consumption in Acceleration Manoeuvre using Hull- Propeller-Engine Interaction Principles and Governor Features, Polish Maritime Research 1 (101) 2019 Vol. 26; pp. 162-173 10.2478/pomr-2019-0018
  • 7. Gajek J., Marine Propulsion System Simulator of a CPP (Symulator Okrętowego Układu Napędowego ze Śrubą Nastawną – in Polish), Budownictwo Okrętowe, March 1975.
  • 8. Andersen T.E., On Dynamics of Large Ship Diesel Engine, PhD Thesis, Technical University of Denmark, 1974.
  • 9. Roszczyk S., et al, Static and Dynamic Characteristics of Marine Generating Sets (Statyczne i Dynamiczne Własności Okrętowych Zespołow Prądotworczych – in Polish), Wydawnictwo Morskie, Gdansk, 1976.
  • 10. Tittenbrun S., Kowalski Z., Łastowski W. F., Characteristics of Rotational Speed Regulators of Ship Diesel Engines under the Light of Testing on Simulation Stands (Własności Regulatorow Prędkości Obrotowej Okrętowych Wysokoprężnych Silnikow Spalinowych w Świetle Badań na Stanowiskach Symulacyjnych – in Polish), Budownictwo Okrętowe, Dec. 1979.
  • 11. Kowalski Z., Simulation Study of Ship Propulsion Subsystems (Badanie Symulacyjne Podsystemow Napędowych Statkow – in Polish), Zeszyt Naukowe Politechniki Gdańskiej (Elektryka), No. 49, Poland, 1980.
  • 12. Krutov V. I., Automatic Control of Internal Combustion Engines, Mir Publishers, Russia, 1987.
  • 13. Blanke M., Andersen J. S., On Dynamics of Large Two Stroke Diesel Engines: New Results from Identification, Proceedings of 9th IFAC World Conference, Budapest, Hungry, 1984.
  • 14. Lam W. C., Katagi T., Hashimoto T., Simulation of Transient Behaviour of Marine Medium Speed Diesel Engine, 3rd International Conf. of MCMC, Southampton, Sept. 1994.
  • 15. Ferenc M., Numerical modeling of the Control Process of the Marine Diesel Engine with Consideration of Nonlinearity (Modelowanie Numeryczne Procesu Regulacji Okrętowego Silnika Wysokoprężnego z uwzględnieniem nieliniowości – in Polish), Zeszyty Naukowe Politechniki Śląskiej, No. 567, 1978.
  • 16. Ferenc M., Osuch W., Stokloska H., A simplified Mathematical Model of the Dynamics of a Medium Speed Diesel Engine (Uproszczony Model Matematyczny Dynamiki Średnioobrotowego Silnika Wysokoprężnego – in Polish), Silniki Splalinowe 4/89, Poland, 1989.
  • 17. Ferenc M., Wideł S., Fiutkowski M., Principles for Selecting the Dynamic Characteristics of the Rotary Speed Controller for a Medium-Speed Diesel Engine Driving a Generator (Zasady Doboru Charakterystyki Dynamicznej Regulatora Prędkości Obrotowej Średnioobrotowego Silnika Wysokoprężnego Napędzającego Prądnicę, Silniki Spalinowe – in Polish), No. 3 ’90. 1990.
  • 18. Smith J. R., et al., Prediction of Dynamic Response ofMarine System Incorporating Induction- Motor Propulsion Drives, Proc. IEE, Vol. 127, No. 5, Sept. 1980.
  • 19. Taylor S. K., et al., The Predetermination of the Dynamic Response of Marine Systems Powered by Parallel Connected Gas Turbine and Diesel Generators, CIMAC 1985, paper D56, Oslo, 1985.
  • 20. Ford M. P., A Simplified Turbocharged Diesel Engine Model, Proceedings IMechE, Vol. 201, paper D4, 1987.
  • 21. Woodward J. B., Lattore R. G., Simulation of Diesel Engine Transient Behaviour in Marine Propulsion Analysis, Report MA-RD-940-83032, US Department of Transportation, Maritime Administration, 1983.
  • 22. Woodward J. B., Lattore R. G., Modelling of Diesel Engine Transient Behaviour in Marine Propulsion Analysis, SNAME Transactions, Vol. 192, 1984.
  • 23. Hendricks E., Chevalier A., Emerging Engine Control Technologies, Technical University of Denmark, 1985.
  • 24. Hendricks E., Poulsen N. K., Minimum Energy Control of a Large Diesel Engine, SAE Technical Paper Series 861191, 1986.
  • 25. Hendricks E., The Analysis of Mean Value Engine Models, SAE Technical Paper Series 890563, 1989.
  • 26. Hendricks E., Mean Value Modelling of Large Turbocharged Two-Stroke Diesel Engines, SAE Technical Paper Series 890564, 1989.
  • 27. Jansen J. P., et al., Mean Value Modelling of a Small Turbocharged Diesel Engine, SAE Tech-nical Paper Series 910070, 1991.
  • 28. Woud J. K., Boot P., Riet B. J., A Diesel Engine Model for the Dynamic Simulation of Propulsion Systems, Schip en Werf de Zee, Vol. 3, pp. 4-13, Jan. 1993.
  • 29. Prochnicki W., Model Matematyczny Układu Turbozespoł Dowadowający - Silnik Spalinowe Przeznaczone do Badań Zmiennych Warunkow Ruchu Zespołu Napędowego Statku, Praca Badawcza Nr. 86/93, Wydz. O. i O., Politechnika Gdanska, Gdansk, 1993.
  • 30. Prochnicki W., Modified System of Cooperation Between Turbocharger and Diesel Engine in Transient States, 1st International Symposium on Automatic Control of Ship Propulsion and Ocean Engineering Systems, Gdansk, 1994.
  • 31. Prochnicki W., Dzida M., Badania Wstępne Układu Turbozespoł Doładowujący Silnik Spali-nowy w Zmiennych Warunkach Ruchu Zespołu Napędowego Statku, Praca badawcza No. 58/94, W. O. i O., Politechnika Gdańska, Poland, 1993.
  • 32. Kafar J., Mathematical Model of Dynamic Behaviour of a Diesel Engine in Propulsion System, Polish Maritime Research, No. 2/94, Poland, 1994.
  • 33. Lan W. C., Katagi T., Hashimoto T., Quasi Steady State Simulation of Diesel Engine Transient Performance and Design of Mechatronic Governor, Bulletin of MarEng Society of Japan, Vol. 24, No. 1, Feb. 1996.
  • 34. Olsen D. R., Simulation of a Free-Piston Engine with Digital Computer, SAE Trans., Vol. 66, pp. 668-682, 1958.
  • 35. Cook H. A., Analysis and Interpretation of Turbo-charged Diesel Engine Performance, SAE Trans., Vol. 67, 1959.
  • 36. Whitehouse N. D., et al., Methods of Predicting Some Aspects of Performance of a Diesel Engine Using a Digital Computer, Proc. IMechE, Vol. 176, No. 9, 1962.
  • 37. Borman G. L., Mathematical Simulation of Internal Combustion Engine Processes, PhD Thesis, University of Wisconsin, 1964.
  • 38. Streit E.E., Mathematical Simulation of Large Pulse- Turbocharged Two-Stroke Diesel Engine, PhD Thesis, University of Wisconsin, 1970.
  • 39. Streit E.E., Mathematical Simulation of Large Pulse- Turbocharged Two-Stroke Diesel Engine, PhD Thesis, University of Wisconsin, 1970.
  • 40. Marzouk M., Some Problems in Diesel Engine Research with Reference to Computer Control and Data Acquisition, Proc. IMechE, Vol. 190, No. 23/76, 1976.
  • 41. Benson S., The Thermodynamics and Gas Dynamics of Internal Combustion Engine, Vol. I, Oxford, Clarendon Press, 1982.
  • 42. Woschni G., Anisits F., Experimental Investigation and Mathematical Presentation of Rate of Heat Release in Diesel Engine Dependent upon Engine Operating Conditions, SAE Technical Paper Series 740086, 1974.
  • 43. Woschni G., A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Technical Paper Series 670931, 1967
  • 44. Wiebe I., Halbempirische Formel fur die Verbrennungsgeschwindigkeit, Velage de Akademic der Wissenschaften der VdSSR, Moscow, 1967.
  • 45. Watson N., Marzouk M., A Non-Linear Digital Simulation of Turbocharged Diesel Engines under Transient Conditions, SAE Technical Paper Series 770123, 1977.
  • 46. Watson N., Janota M. S., Turbocharging the Internal Combustion Engine, MacMillan Publish-ers Ltd., London, 1982.
  • 47. Banisoleiman K., Bazari Z., Smith L. A., Mathieson N., Simulation of Diesel Engine Per-formance, Trans. IMarE, Vol. 105, pp. 117-135, 1993.
  • 48. Larmi M. J., Transient Response Model of Low Speed Diesel Engine in Ice-Breaking Cargo Vessels, PhD Thesis, Helsinki University of Technology, Helsinki, 1993.
  • 49. Ghaemi M. H.: Changing the Ship Propulsion System Performances Induced by Variation in Reaction Degree of Turbocharger Turbine, Journal of Polish CIMAC, Vol. 6., No.1 (2011), pages 55-70.
  • 50. Benson R. S., Wave Action in the Exhaust System of a Supercharged Two-Stroke Engine Model, International Journal of Mechanical Science, Vol. 1, p. 253, 1959.
  • 51. Benson R. S., et al., A Numerical Solution of Unsteady Flow Problems, International Journal of Mechanical Science, Vol. 6, pp. 117-144, 1964.
  • 52. Benson R. S., Woods W. A., Woollat D., Unsteady Flow in Simple Branch Systems, Proc. IMechE, Vol. 178, Pt. 3I(iii), 1963/4.
  • 53. Blair G. P., Arbuckle J. A., Unsteady Flow in the Induction System of a Reciprocating Internal Combustion Engine, SAE 700443, 1970.
  • 54. Blair G. P., Goulburn J. R., The Pressure Time History in the Exhaust System of a High Speed Reciprocating Internal Combustion Engine, SAE 67077, 1967.
  • 55. Blair G. P., McConnel H. J., Unsteady Gas Flow Through High Specific Output Four-Stroke Cycle Engines, SAE 740736, 1974.
  • 56. Bazari Z., A DI Diesel Combustion and Emission Predictive Capability for Use in Cycle Simulation, SAE Technical Paper Series 920462, 1992.
  • 57. Sujesh G., Ramesh S., Modeling and control of diesel engines: A systematic review, Alexandria Engineering Journal, Vol. 57, Issue 4, pp. 4033-4048, 2018, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2018.02.011 (https://www.sciencedirect.com/science/article/pii/S1110016818301984)
  • 58. Lee B., Jung D., Kim Y. W., Physics-Based Control Oriented Mean Value Model for Diesel Combustion Process with EGR Sensitivity, Proceedings of the ASME Dynamic Systems and Control Conference, 2011, pp. 1-8.
  • 59. Hendricks E., and Sorenson S., Mean Value SI Engine Model for Control Studies, American Control Conference, 1990, pp. 1882-1887.
  • 60. Sengupta S., De S., Bhattacharyya A. K., Mukhopadhyay S., Deb A. K., Fault Detection of Air Intake Systems of SI Gasoline Engines using Mean Value and Within Cycle Models, 5th Annual IEEE Conference on Automation Science and Engineering, Bangalore, 2009, pp. 361-366.
  • 61. Yacoub Y., Mean Value Modeling and Control of a Diesel Engine Using Neural Networks, Dr. of Mechanical Engineering Dissertation, West Virginia University, Morgantown, USA, 1999.
  • 62. Theotokatos G. P., A Modeling Approach for the Overall Ship Propulsion Plant Simulation, 6th WSEAS International Conference on System Science and Simulation in Engineering, Venice, 2007, pp. 80-87.
  • 63. Guzzella L., Onder C.H., Introduction to Modeling and Control of Internal Combustion Engine Systems, Springer, 2010.
  • 64. Yum K. K., Modeling and Simulation of Transient Performance and Emission of Diesel Engine, NTNU - Trondheim 2012, pp. 64-68.
  • 65. Scappin F., Stefansson S. H., Haglind F., Andreasen A., Larsen U., Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines, Applied Thermal Engineering, Volume 37, May 2012, Pages 344-352 2012.
  • 66. Kharroubi K., Chen H., A Semi-Experimental Modeling Approach for a Large Two-Stroke Marine Diesel Engine Simulation, 27th CIMAC World Congress, Shanghai, China, May 13-16, 2013, Paper no. 105.
  • 67. Baldi F., Theotokatos, G., Andersson K., Development of a combined mean value-zero dimensional model and application for a large marine four-stroke diesel engine simulation, https://www.researchgate.net/publication/277338414_Development_of_a_combined_mean_value-zero_dimensional_model_and_application_for_a_large_marine_four-stroke_Diesel_engine_simulation
  • 68. Altosole M., Campora U., Figari M., Laviola M., A Diesel Engine Modelling Approach for Ship Propulsion Real-Time Simulators, 2019, https://www.mdpi.com/2077-1312/7/5/138/pdf
  • 69. Zimmer K., Aufladung von Verbrennungsmotoren, 1985, ISBN: 978-3-540-15902-5, https://citations.springernature. com/book?doi=10.1007/978-3-662-05913-5
  • 70. Streuli A., Application of the BBC Power Turbine, BBC Brown Boveri, 1985.
  • 71. Polish Norm PN-M-01521:1993, “Silniki spalinowe tłokowe – Terminologia”.
  • 72. Chen S. K., Flynn P., Development of a Compression Ignition Research Engine, SAE 650733, 1965.
  • 73. Heywood J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988.
  • 74. MAN-B&W Computerized Engine Application System (CEAS), https://www.man-es.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations.
  • 75. MAN B&W S65ME-C8.5-TII Project Guide Electronically Controlled Two-stroke Engines, online: https://www.academia.edu/35674638/MAN_B_and_W_S90ME_C8_TII_Project_Guide_Electronically_Controlled_Two_stroke_Engines
  • 76. TCA Turbocharger, The Benchmark, online: https://turbocharger.man-es.com/docs/default-source/shopwaredocuments/tca-turbochargerf451d068cde04720bdc9b8e95b7c0f8e.pdf?sfvrsn=81b197c6_3, & Project Guide TCA Turbocharger, online: https://turbocharger.man-es.com/docs/default-source/shopwaredocuments/tca.pdf?sfvrsn=98c91c09_2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3477d4d8-35fc-498e-9040-a3e2cec416ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.