PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected converter topologies for interfacing energy storages with power grid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents different solutions applicable in power converter systems for connecting power grids with energy storage systems such as superconducting magnetic energy storage (SMES), supercapacitor energy storage (SES) or chemical batteries. Those systems are characterized by bidirectional current flow between energy storage and power grid. Two-level converters (AC-DC and DC-AC converters) dedicated for low power energy storage compatible with 3×400 V-type power grids are proposed. High power systems are connected with 3×6 kV-type power grids via transformers that adjust voltage to the particular energy storage or directly, based on multilevel power converters (AC-DC and DC-AC) or dual active bridge (DAB) systems. Solutions ensuring power grid compatibility with several energy storage systems of the same electrical parameters as well as of different voltage-current characteristics are also proposed. Selected simulation results illustrating operation of two system topologies of 200 kW power for two-level converter and neutral point clamped (NPC) three-level converter are presented.
Rocznik
Strony
579--588
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., tab.
Twórcy
autor
  • Electrotechnical Institute, 28 Pożaryskiego St., 04-703 Warsaw, Poland
autor
  • Electrotechnical Institute, 28 Pożaryskiego St., 04-703 Warsaw, Poland
  • Electrotechnical Institute, 28 Pożaryskiego St., 04-703 Warsaw, Poland
Bibliografia
  • [1] Electricity Storage, Leading the Energy Transition Factbook, SBC Energy Institute, 2013.
  • [2] H. Majchrzak, “Energy storage as a remedy for RES problems”, Czysta Energia 8/2014 [in Polish] (2014).
  • [3] Technology Roadmap IEA, Energy Storage, IEA, 2014 https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf
  • [4] J. Jensen and B. Sorensen, Fundamentals of Energy Storage, J. Wiley, New York, 1984.
  • [5] Y. Brunet, Energy Storage. Hoboken, Wiley, 2011.
  • [6] M.-C. Pera, D. Hissel, H. Gualous, and C. Turpin, Electrochemical Components, ISTE – J. Wiley, 2013.
  • [7] S.O. Amrouche, D. Rekioa, and T. Rekioa, “Overview of energy storage in renewable energy systems”, 3rd International Renewable and Sustainable Energy Conference, 1‒6 (2015).
  • [8] M. Bartosik, W. Kamrat, M.P. Kaźmierkowski, W. Lewandowski, M. Pawlik, T. Peryt, T. Skoczkowski, A. Strupczewski, and A. Szeląg, “Energy storage and hydrogen economy”, Przegląd Elektrotechniczny 92 (12), 332‒340 [in Polish] (2016).
  • [9] S. Vazquez, S. M. Lukic, E. Galvan, L.G. Franquelo, and J.M. Carrasco, “Energy storage systems for transport and grid applications” IEEE Trans. on Industrial Electronics 57(12), 3881–3895 (2010).
  • [10] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the applied potential in power system operation,” Appl. Energy 137, 511‒536 (2015).
  • [11] G. Benysek, M.P. Kazmierkowski, J. Popczyk, and R. Strzelecki, “Power electronic systems as crucial part of smart grid infrastructure – a survey”, Bull. Pol. Ac.: Tech. 59 (4), 445‒473 (2011).
  • [12] M. Malinowski and M.P. Kaźmierkowski, “Simple direct power control of three-phase rectifier using space vector modulation – a comparative study”, EPE European Power Electronics and Drives Journal, 13 (2), 28‒33 (2003).
  • [13] H. Abu-Rub, M. Malinowski, and K. Al-Haddad, Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications, IEEE Press and J. Wiley & Sons Ltd., 2014.
  • [14] P.J. Grabovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “A bidirectional three-level dc-dc converter for the ultracapacitor applications”, IEEE Trans. Ind. Elect. 57(10), 3415‒3430 (2010).
  • [15] S. Chakraborty, M.G. Simoes, and W.E. Kramer (Eds.), Power Electronics for Renewable and Distributed Energy Systems, Springer-Verlag London, 2013.
  • [16] M. Malinowski, M.P. Kaźmierkowski, and A.M. Trzynadlowski, “A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives,” IEEE Trans. Power Electron., 18(6), 1390–1396 (2003).
  • [17] F.A. Inthamoussou, J. Pegueroles-Queralt, and F.D. Bianchi, “Control of a supercapacitor energy storage system for microgrid applications”, IEEE Trans. on Energy Conversion 28(3), 690–697 (2013).
  • [18] R. Barlik, M. Nowak, P. Grzejszczak, and M. Zdanowski, “Analytical description of power losses in a transformer operating in the dual active bridge converter”, Bull. Pol. Ac. Tech. 64(3), 561‒574 (2016).
  • [19] S.P. Engel, N. Soltau, H. Stagge, and R.W. De Doncker, “Dynamic and balanced control of three-phase high-power dual–active bridge dc-dc converters in dc-grid applications”, IEEE Trans. Power Electron. 28(4), 1880‒1889 (2013).
  • [20] W. Jing, Ch.H. Lai, S.H.W. Wong, and M.L.D. Wong, “Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: a review”, IET Renewable Power Generation, 11, 461‒469, (2017).
  • [21] M. Momayyezan, D.B. W. Abeywardana, B. Hredzak, and V.G. Agelidis, “Integrated reconfigurable configuration for battery/ultracapacitor hybrid energy storage systems”, IEEE Transactions on Energy Conversion 31(4) 1583‒1590 (2016).
  • [22] H. Zhou, T. Bhattacharya, D. Tran, T.S.T. Siew, and A.M. Khambadkone, “Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications,” IEEE Transactions on Power Electronics 26(3) 923‒930 (2011).
  • [23] X. Zhao, Y.W. Li, H. Tian, and X. Wu, “Energy management strategy of multiple supercapacitors in a DC microgrid using adaptive virtual impedance”, IEEE Journal of Emerging and Selected Topics in Power Electronics 4(4), 1174–1185 (2016).
  • [24] D.B. Wickramasinghe Abeywardana, B. Hredzak, V.G. Agelidis, and G.D. Demetriades, “Supercapacitor sizing method for energy-controlled filter-based hybrid energy storage systems”, IEEE Trans. on Power Electronics, 32(2), 1626–1637 (2017).
  • [25] Zhe Zhang, Ziwei Ouyang, O.C. Thomsen, and M.A.E. Andersen, “Analysis and design of a bidirectional isolated DC–DC converter for fuel cells and supercapacitors hybrid system”, IEEE Trans. on Power Electronics 27(2), 848–859 (2012).
  • [26] S.D. Gamini Jayasinghe, D.M. Vilathgamuwa, and U.K. Madawala, “Diode-clamped three-level inverter-based battery/ supercapacitor direct integration scheme for renewable energy systems”, IEEE Trans. on Power Electronics 26(12), 3720–3729 (2011).
  • [27] M. Nowak, J. Hildebrandt, and P. Łuniewski, “Converters with AC transformer intermediate link suitable as interfaces for supercapacitor energy storage”, Proc. IEEE Power Electron. Spec. Conf. 5, 4067‒4073 (2001).
  • [28] M.H. Ali, B. Wu, and R.A. Dougal, “An overview of SMES applications in power and energy systems,” IEEE Trans. on Sustainable Energy 1(1) 38‒47 (2010).
  • [29] J.X. Jin and X.Y. Chen, “Study on the SMES application solutions for smart grid”, Physics Procedia 36, 902–907 (2012).
  • [30] P. McKenna, “Superconducting magnets for grid-scale storage”, Technology Review, Energy, March 2011.
  • [31] P. Mukherjee and V.V. Rao, “Power system transient stability with SMES controlled by Artificial Intelligent Techniques”, Electrical and Computer Engineering, 108‒111 (2016).
  • [32] P.D. Baumaan, “Energy conservation and environmental benefits that may be realized from superconducting magneting energy storage”, IEEE Trans. on Energy Conservation 7 (6) 253‒259 (1992).
  • [33] W.K. Ham, S.W. Hwang, and J.H. Kim, “Active and reactive power control model of superconducting magnetic energy storage (SMES) for improvement of power system stability”, J Elect Tech 3(1), 1‒7 (2008).
  • [34] Z. Wang, K.T. Chau, B. Yuwen, Z. Zhang, and F. Li, “Power compensation and power quality improvement based on multiple-channel current source converter fed HT SMES”, IEEE Trans. on Applied Superconductivity 22(3), art. no. 5701204, (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3477099d-3ae0-43ea-bef9-6e9998689e43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.