PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Reductive removal of triclosan by Sn-bearing materials and cathode powder recovered from spent Liion batteries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tin (Sn)-bearing materials, tin oxide (SnO) and elemental tin (Sn(0)), and cathode powder recovered from spent Liion batteries were examined as reductants to transform triclosan, a common antibiotic through batch experiments. The reductive removal of triclosan was rapidly observed within 1 h under the given conditions, however, the formation of a passivation layer, mainly composed of SnO2. Tin dioxide inhibited the reduction reactions on the surfaces of SnO and Sn(0). In contrast, dissolved Sn2+, formed by the addition of SnCl2, could rapidly reduce triclosan within 5 h, resulting in over 95% removal. The results supported the notion that the inhibition of Sn2+formation by SnO2 on the surface acted as a ratelimiting step in the reductive removal of triclosan by Sn(0) and SnO. Conversely, the removal of triclosan by cathode powder was due to sorption and reduction, and its efficacy was limited by increased pH. A synergistic combination of Snbearing materials and cathode powder significantly improved the reduction of triclosan. Our findings suggest that the application of cathode Sn(0)/SnO/cathode powder with SnCl2 holds promise as an effective approach for the reductive transformation of triclosan in engineered systems.
Rocznik
Strony
101--113
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 44610, South Korea
autor
  • Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 44610, South Korea
autor
  • Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 44610, South Korea
Bibliografia
  • [1] SMITH P.J., Chemistry of Tin, Springer, Glasgow 1998.
  • [2] US Department of Health and Human Services (HHS), Toxicological Profile for Tin and Tin Compounds, Agency for Toxic Substances and Disease Registry, Atlanta, GA, 2005.
  • [3] BORONINA T., KLABUNDE K.J., SERGEEV G., Destruction of organohalides in water using metal particles. Carbon tetrachloride/water reactions with magnesium, tin, and zinc, Environ. Sci. Technol., 1995, 29, 1511–1517. DOI: 10.1021/es00006a012.
  • [4] SU C., PULS R.W., Kinetics of trichloroethene reduction by zerovalent iron and tin. Pretreatment effect, apparent activation energy, and intermediate products, Environ. Sci. Technol., 1999, 33, 163–168. DOI: 10.1021/es980481a.
  • [5] NISHIDE S., SHODA M., Biodegradation of two aromatic amines produced from the decolorization of Orange II by zero-valence tin, J. Water. Environ. Technol., 2011, 9, 89–100. DOI: 10.2965/jwet.2011.89.
  • [6] ŠERUGA M., METIKOŠ-HUKOVIĆ M., Passivation of tin in citrate buffer solutions, J. Electr. Chem., 1992, 334, 223–240. DOI: 10.1016/0022-0728(92)80574-N.
  • [7] LOPES R.P., DE URZEDO A.P.F.M., NASCENTES C.C., AUGUSTI R., Degradation of the insecticides thiamethoxam and imidacloprid by zero-valent metals exposed to ultrasonic irradiation in water medium: electrospray ionization mass spectrometry monitoring, RCM, 2008, 22, 3472–3480. DOI: 10.1002/rcm.3749.
  • [8] BELLAMY F.D., OU K., Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium, Tetrah. Lett., 1984, 25, 839–842. DOI: 10.1016/S0040-4039(01)80041-1.
  • [9] CASALS L.C., MARTINEZ-LASERNA E., GARCÍA B.A., NIETO N., Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction, J. Clean. Prod., 2016, 127, 425–437. DOI: 10.1016/j.jclepro. 2016.03.120.
  • [10] YAO Y., ZHU M., ZHAO Z., TONG B., FAN Y., HUA Z., Hydrometallurgical processes for recycling spent lithiumion batteries. A critical review, ACS Sustain. Chem. Eng., 2018, 6, 13611–13627. DOI: 10.1021 /acssuschemeng.8b03545.
  • [11] PINEGAR H., SMITH Y.R., Recycling of end-of-life lithiumion batteries, part II: Laboratory-scale research developments in mechanical, thermal, and leaching treatments, J. Sustain. Metall., 2020, 6, 142–160. DOI: 10.1007/s40831-020-00265-8.
  • [12] IKEHATA K., EL-DIN M.G., SNYDER S.A., Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater, Ozone Sci. Eng., 2008, 30, 21–26. DOI: 10.1080 /01919510701728970.
  • [13] TOHIDI F., CAI Z., Fate and mass balance of triclosan and its degradation products. Comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion, J. Hazard. Mater., 2017, 323, 329–340. DOI: 10.1016/j.jhazmat.2016.04.034.
  • [14] YU B., ZHENG G., WANG X., WANG M., CHEN T., Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies, Front. Environ. Sci. Eng., 2019, 13, 41. DOI: 10.1007/s11783-019-1125-4.
  • [15] ALVES D., VILLAR I., MATO S., Thermophilic composting of hydrocarbon residue with sewage sludge and fish sludge as cosubstrates. Microbial changes and TPH reduction, J. Environ. Manage., 2019, 239, 30–37. DOI: 10.1016/j.jenvman.2019.03.028.
  • [16] ZHANG X.R., SONG K.H., LIU J.F., ZHANG Z.Y., WANG C.C., LI H.Y., Sorption of triclosan by carbon nanotubes in dispersion: the importance of dispersing properties using different surfactants, Colloid Surf. A, 2019, 562, 280–288. DOI: 10.1016/j.colsurfa.2018.11.037.
  • [17] KAUR H., HIPPARGI G., POPHALI G.R., BANSIWAL A., Biomimetic lipophilic activated carbon for enhanced removal of triclosan from water, J. Colloid. Interf. Sci., 2019, 535, 111–121. DOI: 10.1016/j.jcis.2018.09.093.
  • [18] MARYSKOVA M., RYSOVA M., NOVOTNY V., SEVCU A., Polyamide-laccase nanofiber membrane for degradation of endocrine-disrupting bisphenol A, 17 alpha-ethinylestradiol, and triclosan, Polymers, 2019, 11, 11560. DOI: 10.3390/polym11101560.
  • [19] LI M., XU G.H., GUAN Z.Y., WANG Y., YU H.W., YU Y., Synthesis of Ag/BiVO4/rGO composite with enhanced photocatalytic degradation of triclosan, Sci. Total Environ., 2019, 664, 230–239. DOI: 10.1016/j.scitotenv.2019.02.027.
  • [20] GARCÍA-ESPINOZA J.D., ROBLES I., GIL V., BECERRIL-BRAVO E., BARRIOS J.A., GODÍNEZ L.A., Electro-chemical degradation of triclosan in aqueous solution. A study of the performance of an electro-Fenton reactor, J. Environ. Chem. Eng., 2019, 7 (4), 103228. DOI: 10.1016/j.jece.2019.103228.
  • [21] ZHOU X.L., XU D., CHEN Y.C., HU Y.Y., Enhanced degradation of triclosan in heterogeneous E-Fen-ton process with MOF-derived hierarchical Mn/Fe@PC modified cathode, Chem. Eng. J., 2020, 384, 123324. DOI: 10.1016/j.cej.2019.123324.
  • [22] PENG F.J., YING G.G., PAN C.G., SELCK H., SALVITO D., VAN DEN BRINK P.J., Bioaccumulation and biotransformation of triclosan and galaxolide in the freshwater oligochaete Limnodrilus hoffmeisteri in a water/sediment microcosm, Environ. Sci. Technol., 2018, 52, 8390–8398. DOI: 10.1021/acs.est.8b02637.
  • [23] LIN Y.Q., JIN X.Y., OWENS G., CHEN Z.L., Simultaneous removal of mixed contaminants triclosan and copper by green synthesized bimetallic iron/nickel nanoparticles, Sci. Total Environ., 2019, 695, 133878. DOI: 10.1016/j.scitotenv.2019.133878.
  • [24] WANG L., LIU Y., WANG C., ZHAO X., MAHADEVA G.D., WU Y., MA J., ZHAO F., Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells, J. Hazard. Mater., 2018, 344, 669–678. DOI: 10.1016/j.jhazmat.2017.10.021.
  • [25] XU W.L., JIN B., ZHOU S.F., SU Y.Y., ZHANG Y.F., Triclosan removal in microbial fuel cell: the contribution of adsorption and bioelectricity generation, Energies, 2020, 13, 761–770. DOI: 10.3390/en13030761.
  • [26] RUMP H.H., KRIST H., Laboratory Manual for the Examination of Water, Wastewater and Soil, VCH, New York 1988.
  • [27] FARIA P., ÓRFÃO J., PEREIRA M., Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 2004, 38, 2043–2052. DOI: 10.1016/j.watres.2004.01.034.
  • [28] AESCHBACHER M., SANDER M., SCHWARZENBACH R.P., Novel electrochemical approach to assess the redox properties of humic substances, Environ. Sci. Technol., 2010, 44, 87–93. DOI: 10.1021/es902627p.
  • [29] SEO Y.D., OH S.Y., RAJAGOPAL R., RYU K.S., Redox reactive contaminant removal using biocharcoated metals: the role of electrochemical properties, Int. Environ. Sci. Technol., 2022, 19, 4209–4220. DOI: 10.1007/s13762-021-03452-6.
  • [30] MURDOCK B.E., TOGHILL K.E., TAPIA‐RUIZ N., A perspective on the sustainability of cathode materials used in lithium‐ion batteries, Adv. Energy Mater., 2021, 2102028. DOI: 10.1002/aenm.202102028.
  • [31] FU F., DIONYSIOU D.D., LIU H., The use of zero-valent iron for groundwater remediation and wastewater treatment. A review, J. Hazard. Mater., 2014, 267, 194–205. DOI: 10.1016/j.jhazmat. 2013.12.062.
  • [32] AN L., Recycling of Spent LithiumIon Batteries, Springer, Cham 2019.
  • [33] JUNG J., SUI P.C., ZHANG J., Hydrometallurgical Recycling of Lithium-Ion Battery Materials, CRC Press, Boca Raton 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34768dd2-1bfb-45bf-8a94-df52e5ea8790
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.