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Abstract 

In this paper there are considered vibrations of Euler-Bernoulli beams with geometrical and material properties 
periodically varying along the axis. The basic exact equations with highly oscillating periodic coefficients are 

replaced by the system of averaged equations with constant coefficients. The new model is based on the 

tolerance modelling technique, which describes macro-dynamics of the beam including the effect of the 

microstructure size. The purpose of this paper is to present an approximately equivalent model, which describe 

vibrations of periodic beams taking into account length of the periodicity cell. 
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1. Introduction 

This paper is related to certain problems, which are met in the analysis of periodic 

beams. Dynamics of such beams is described by differential equations with non-

continuous highly oscillating periodic coefficients. Therefore, various approximate 

models, introducing effective beam properties are proposed. Amongst them, can be 

mentioned those, based on the asymptotic homogenization, cf. [1, 2, 7]. However, in 

many technical problems, number of cells is finite. Thus, neglecting the microstructure 

size may lead to erroneous results, especially in the range of high frequencies. 

In order to include the effect of microstructure size, the tolerance modelling 

technique is introduced (cf. the book edited by Cz. Woźniak, Michalak and Jędrysiak 
[10]). The preceding method is very general and convenient for modelling problems, 

described by differential equations with highly oscillating coefficients, e.g. modelling of 

dynamic behaviour of microstructured thin functionally graded plates [6] and dynamic 

problems for plates with a periodic structure [8]. In contrary to the exact solutions, the 

obtained relations have constant coefficients, some of which explicitly depend on the 

microstructure size. 

Wave propagation and linear vibrations in periodic beams are revised in many 

research papers. For a periodic Euler-Bernoulli beam it is considered in [3] and [9]. 
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Frequency band gaps were analyzed by the differential quadrature method in [11]. The 

transfer matrix method was applied in [12] in analysis of flexural wave propagation in 

the beam on elastic foundation. In [4] a wide literature study on composite beam 

vibration can be found. In order to determine a homogenized model of a composite beam 

with small periodicity the two-scale asymptotic expansion method is used in [5]. 

In this paper the tolerance model of Euler-Bernoulli beam with geometrical and 

material properties periodically varying along the axis is presented and discussed. The 

tolerance averaging model is applied to investigate free vibration frequencies for an 

Euler-Bernoulli beam. Obtained results are compared with finite element method. 

2. Formulation of the problem 

Let Oxyz be an orthogonal Cartesian coordinate system, the Ox axis coincides with the 

axis of the beam. It is assumed that considered elastic periodically inhomogeneous 

Euler-Bernoulli beam consists of many small repetitive elements called periodicity cells. 

It is also assumed that every such element can be treated as an Euler-Bernoulli beam. 

Hence, it is defined the region Ω ≡ [0, L], where L is the beam length. The considered 

cells are defined as Δ ≡ [–l / 2, l / 2], where l<<L is the dimension of the cell, called 

microstructure parameter. It is assumed that the beam possesses principal planes and that 

the vibration takes place in one of the principal planes. Let w = w(x,t) denote the small 

deflection of the neutral axis of the beam from its initial, straight configuration. The 

following notation is introduced: ∂k=∂k/∂xk is the k-th derivative with respect to the x 

coordinate and overdot stands for the derivative with respect to time. For small 

deflections of the beam strain and kinetic energy are: 
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where E = E(x), J = J(x), µ = µ(x) are the Young’s modulus of the beam material, the 

cross-sectional moment of inertia, the mass per unit length of the beam, respectively. 

Since only free vibrations are considered, the potential energy of the external load is 

assumed to be zero. 

The equation of motion is derived from Hamilton’s principle: 
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The Lagrange function for the problem can be written as: 
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Following the usual procedure of the calculus of variations, the Euler equation of motion 

is obtained: 

( ) .022 =+¶¶ wwEJ &&m  (4) 

The coefficients E, J, µ, are in considered cases highly oscillating, non-continuous 

functions of the x-coordinate. 
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3. The tolerance averaging approach – introductory concepts and basic assumptions 

The main concept of tolerance averaging approach is the tolerance reflexive relation. 

Amongst the fundamental ideas of the technique the most remarkable are certain classes 

of functions such as the tolerance-periodic (TP), slowly-varying (SV), highly oscillating 

(HO) and fluctuation shape (FS) function. 

A cell at DWÎx  is denoted by })(:{,)( WÌDWÎ=WD+=D D xxxx . The averaging 

operator for an arbitrary integrable function f is defined by 

).(,,)(
1

)(

)(

xyxdyyf
l

xf

x

DÎWÎ= D
D
ò  (5) 

The basic assumption of micro-macro decomposition plays imperative role in tolerance 

modelling technique. The unknown transverse deflection can be decomposed into their 

averaged and fluctuating part: 
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where W(·) (macrodeflection) and VA(·) (fluctuation amplitudes of the deflection) 

functions are the basic unknowns; hA is the known fluctuation shape function. The 

tolerance parameter, associated with the tolerance relation, is denoted by d, 0<d<<1. It is 

assumed that the unknown functions are slowly-varying (SV) up to the second derivative, 

which is denoted by the top index. 

The highly oscillating fluctuation shape functions (FSFs) hA, proposed a priori for 

every considered problem, are assumed to describe the unknown fields oscillations 

caused by the structure inhomogeneity. What is more, FSFs have to ensure the l-

periodicity constraint and provide the conditions below: 
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4. Governing equations of the model 

4.1. Tolerance model equations 

In the first place, the micro-macro decomposition (6) of Lagrangian (3) is performed. 

Next, averaging over an arbitrary periodicity cell is performed (5), applying the 

aforementioned approximations (7). 

The variation of averaged functional has the specified form: 
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Therefore, after expanding we obtain: 
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From the principle of stationary action, applied to the averaged Lagrangian, the averaged 

Euler-Lagrange equations are obtained: 
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In contrast to the exact formulation (4), obtained system of 1+N differential equations 

for the macrodisplacement W(·) and fluctuation amplitudes of deflection VA(·) has 

constant coefficients. Underlined coefficients depend on the microstructure parameter l. 

In order to present (10) in more convenient form, let us denote coefficients by: 
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After taking into account (11) we get: 
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where MAB depends on microstructure size. 

4.2. Asymptotic model equations 

The asymptotic tolerance model is obtained by neglecting coefficients dependent on 

microstructure size l. If matrix DAB is nonsingular, then there exists an inverse matrix 

(DAB)-1.Thus, let us denote the effective stiffness of the beam by: 
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Therefore the asymptotic model equations become 
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5. Natural frequencies 

We can transform system of PDEs (12) into system of ODEs using separation of 

variables. Let us expand macrodeflection and fluctuation amplitudes of the deflection 

into series of eigenfunctions of a simply supported beam: 
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Substituting (16) into (13) and limiting the analysis for one FSF we obtain: 
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There can be assumed the following solutions: 
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In order to find free vibrations frequencies, we introduce subsequent symbols: 
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System of equations (17) is in fact, an eigenvalue problem: 
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We can obtain expressions for high and low natural frequencies by finding the roots of 

characteristic polynomial: 
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6. Examples of applications 

6.1. Introduction 

The object under consideration is a hinged-hinged beam, which fragment is shown in 

Fig. 1. The beam’s cross section, moment of inertia, Young’s modulus and mass per unit 

length are periodically varying along the axis. It is assumed that cross section of the 

beam is rectangular. Considered periodicity cell, presented in Fig. 2, has symmetrical 

shape. Length of its segments depends on an α parameter. 

 

Figure 1. Fragment of considered periodic Euler-Bernoulli beam 

The fluctuation shape functions represent the oscillations of displacements within the 

periodicity cell. For a purposes of this paper there were used approximate l-periodic 

trigonometric functions: h1(y) = l2[cos(2πy/l)+c]. 

 

Figure 2. Periodicity cell 
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6.2. Results and discussion 

The free vibrations of a slender periodic beam depending on the α parameter are 

considered. The calculations are carried out for two cases: 

1. Constant geometrical properties and periodically varying values of mass density and 

Young’s modulus. 

2. Constant material properties and periodically varying height of beam’s cross 

section. 

In both cases it is assumed that considered beam has following properties: length 

L = 1.0 m; periodicity cell’s length l = 1/10L = 10 cm. 

For the first problem it is assumed that Young’s modulus E1 = E = 210 GPa; 

E2  = [0.25, 0.50, 0.75]E; mass density ρ1 = ρ= 7860 kg/m3; ρ2 = [0.25, 0.50, 0.75]ρ; 

cross section width and height: b = 2 cm, h = 2 cm. The results are shown in Fig. 3 and 

Fig. 4. It is evident that TAT has the best agreement with FEM for less disproportion of 

material parameters. For E2 = 0.75E and E2 = 0.50E the solutions are almost equal. 

In the second case we declare following properties: E = 210 GPa, ρ= 7860 kg/m3; 

b = 2 cm; h1 = h = 2 cm, h2 = [0.50, 0.70, 0.90]h. Figure 4(a) shows the results for this 

particular case. It is evident that difference in stiffness of the beam’s segments is 

noticeably high. Similarly, as it was earlier, the proposed method delivered the best 

results for less disproportion of given properties. It is evident that tolerance model in 

cases with high disproportion is stiffer that FEM. The maximum value of obtained 

frequencies from both tolerance averaging method and FEM is denoted by ωmax. What is 

more, TAT gives the opportunity to analyse higher natural frequencies, as it is shown in 

Fig. 4(b). Study based on the finite element method does not provide such a possibility. 

The assumed tolerance averaging model has 2 degrees of freedom and approximate 

fluctuation shape functions. It is worth noting, that comparative finite element model has 

30 elements and 60 degrees of freedom.  

  

Figure 3. First natural frequencies for various values of mass density  

and Young’s modulus 
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Figure 4. First lower (a) and higher (b) natural frequencies for various values of cross 

section height 

7. Conclusions 

The free vibrations of Euler-Bernoulli beams, with geometrical and material properties 

periodically varying along the axis have been considered. The model equations are 

obtained by implementing the tolerance averaging technique. Derived differential 

equations have constant coefficients. The main advantage of this approach is that 

it includes the effect of the period lengths on the overall behaviour of these beams. 

Despite the use of the approximate fluctuation shape functions the results are consistent 

with finite element method. 
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