PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fire and explosion characteristics of energy willow biomass during the superheated steam drying process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Charakterystyka pożarowo-wybuchowa biomasy wierzby energetycznej w procesie suszenia parą przegrzaną
Języki publikacji
EN
Abstrakty
EN
In this paper the explosive and fire properties of energy willow dust were experimentally determined before and after drying with superheated steam at temperatures of 120°C, 140°C, 160°C and 180°C. The conducted research has shown that operating parameters of the installation of drying with superheated steam of the energy willow biomass have a decisive impact on the fire-explosive characteristics of the dust produced. The results indicate that the higher the drying temperature, the stronger the probability of ignition of the willow dust cloud, the faster the flame propagation and the higher the explosion intensity. Although the superheated steam drying installation for energy willow biomass is considered to be safe, the probability of occurrence of a fire or explosion events of the biomass dust-air mixture is likely.
PL
W artykule wyznaczono eksperymentalnie właściwości wybuchowe i pożarowe pyłu wierzby energetycznej przed i po suszeniu parą przegrzaną w temperaturach 120°C, 140°C, 160°C i 180°C. Na podstawie przeprowadzonych badań stwierdzono, że parametry pracy instalacji suszenia parą przegrzaną biomasy wierzby energetycznej mają decydujący wpływ na charakterystykę pożarowo- -wybuchową powstającego pyłu. Wyniki wskazują, że im wyższa temperatura suszenia, tym większe prawdopodobieństwo zapłonu chmury pyłu wierzby, tym szybsze rozprzestrzenianie się płomienia i większa intensywność wybuchu. Pomimo, że instalacja suszenia parą przegrzaną biomasy wierzby energetycznej jest uważana za bezpieczną to prawdopodobieństwo wystąpienia zdarzeń pożarowych lub wybuchowych mieszaniny pyłowo-powietrznej biomasy jest prawdopodobne.
Rocznik
Tom
Strony
21--36
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Lodz University of Technology, Department of Process and Environmental Engineering, Faculty of Occupational Safety Engineering
  • The Main School of Fire Service, Faculty of Safety and Civil Protection Engineering, Department of Combustion and Explosion Processes Theory
  • Lodz University of Technology, Department of Process and Environmental Engineering, Faculty of Occupational Safety Engineering
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Department of Engineering and Chemical Apparatus
Bibliografia
  • 1. Pakowski Z., Krupinska B., Adamski R., Prediction of sorption equilibrium both in air and superheated steam drying of energetic variety of willow Salix viminalis in a wide temperature range, “Fuel.” 2007, 86, 1749–1757. https://doi.org/10.1016/j.fuel.2007.01.016.
  • 2. Adamski R., Siuta D., Kukfisz B., Mitkowski P.T., Szaferski W., Influence of process parameters in superheated steam drying on fire and explosion parameters of woody biomass, “Fuel Processing Technology” 2021, 211, https://doi.org/10.1016/j.fuproc.2020.106597.
  • 3. Pang S., Mujumdar A.S., Drying of woody biomass for bioenergy: Drying technologies and optimization for an integrated bioenergy plant, “Dry. Technol.” 2010, 28, 690–701. https://doi.org/10.1080/07373931003799236.
  • 4. Le K.H., Tran T.T.H., Kharaghani A., Tsotsas E., Modelling of superheated steam drying of wood particles, “J. Mech. Eng. Res. Dev.” 2020, 43, 160–170.
  • 5. Hao X., Yu C., Zhang G., Li X., Wu Y., Lv J., Modelling moisture and heat transfer during superheated steam wood drying considering potential evaporation interface migration, “Dry. Technol.” 2019. https://doi.org/10.1080/07373937.2019.1662801.
  • 6. Tran T.T.H., Modelling of drying in packed bed by super heated steam, “J. Mech. Eng. Res. Dev.” 2020, 43, 135–142.
  • 7. Le K.H., Hampel N., Kharaghani A., Bück A., Tsotsas E., Superheated steam drying of single wood particles: A characteristic drying curve model deduced from continuum model simulations and assessed by experiments, “Dry. Technol.” 2018, 36, 1866–1881. https://doi.org/10.1080/07373937.2018.1444633.
  • 8. Markowski A., Mujumdar A., Safety Aspects of Industrial Dryers, “Handb. Ind. Drying”, Third Ed. (2006). https://doi.org/10.1201/9781420017618.ch48.
  • 9. Ennis T., Fire and explosion hazards in the biomass industries, Inst. Chem. Eng. Symp. Ser. 2016-January 2016, 1–9.
  • 10. Pak S., Jung S., Roh C., Kang C., Case studies for dangerous dust explosions in South Korea during recent years, “Sustain.” 2019, 11. https://doi.org/10.3390/su11184888.
  • 11. Hedlund F.H., Astad J., Nichols J., Inherent hazards, poor reporting and limited learning in the solid biomass energy sector: A case study of a wheel loader igniting wood dust, leading to fatal explosion at wood pellet manufacturer, “Biomass and Bioenergy.” 2014, 66, 450–459. https://doi.org/https://doi.org/10.1016/j.biombioe.2014.03.039.
  • 12. Markowski A.S., Mujumdar A.S., Drying Risk Assessment Strategies, “Dry. Technol.” 2004, 22, 395–412. https://doi.org/10.1081/DRT-120028242.
  • 13. Gibson N., Harper D.J., Rogers R.L., Evaluation of the fire and explosion risk in drying powders, “Plant/Operations Prog.” 1985, 4, 181–189. https://doi.org/10.1002/ prsb.720040315.
  • 14. PN-EN 14034-1+A1:2011 Determination of explosion characteristics of dust clouds – Part 1: Determination of maximum explosion pressure pmax of a dust cloud.
  • 15. PN-EN 14034-2+A1:2011 Determination of explosion characteristics of dust clouds – Part 2: Determination of the maximum rate of explosion pressure rise (dp/dt)max of dust clouds.
  • 16. PN-EN 14034-3+A1:2011 Determination of explosion characteristics of dust clouds – Part 3: Determination of the lower explosive limit LEL of dust clouds.
  • 17. PN-EN 50281-2-1:2002 Electrical apparatus for use in the presence of combustible dust – Part 2-1: Test methods – Methods for determining the minimum ignition temperatures of dust.
  • 18. PN-EN ISO/IEC 80079-20-2:2016 Explosive atmospheres – Part 20-2: Material properties – Test methods for combustible dust.
  • 19. PN-EN 13821:2004 Potentially explosive atmospheres – Explosion prevention and protection – Determination of minimum ignition energy of dust/air mixtures.
  • 20. Dyduch Z., Toman A., Adamus W., Measurements of turbulence intensity in the standard 1 m3 vessel, “J. Loss Prev. Process Ind.” 2016, 40, 180–187. https://doi.org/10.1016/j.jlp. 2015.12.019.
  • 21. Dyduch Z., Pękalski A., Methods for more accurate determination of explosion severity parameters, “J. Loss Prev. Process Ind.” 2013, 26, 1002–1007. https://doi.org/10.1016/j.jlp. 2013.10.002.
  • 22. Eckhoff R.K., Measurement of minimum ignition energies (MIEs) of dust clouds – History, present, future, “J. Loss Prev. Process Ind.” 2019, 61, 147–159. https://doi.org/ https://doi.org/10.1016/j.jlp.2019.05.001.
  • 23. Kukfisz B., The potential fire and explosion hazards in biomass co-firing with conventional fossil fuels based on data obtained during testing, “E3S Web Conf.” 2018, 45. https://doi.org/10.1051/e3sconf/20184500039.
  • 24. Havlík J., Dlouhý T., Pitel’ J., Drying Biomass with a High Water Content—The Influence of the Final Degree of Drying on the Sizing of Indirect Dryers, “Processes” 2022, 10, 739. https://doi.org/10.3390/pr10040739.
  • 25. Murugan P., Dhanushkodi S., Sudhakar K., Wilson V.H., Industrial and Small-Scale Biomass Dryers: An Overview, “Energy Eng.” 2021, 118, Np. 3, 435–446. doi:10.32604/ EE.2021.013491.
  • 26. Kung K.S., Ghoniem A. F., Multi-scale analysis of drying thermally thick biomass for bioenergy applications, “Energy” 2019, 187, 115989. https://doi.org/10.1016/j.energy.2019.115989.
  • 27. Wade A., Report on Biomass Drying Technology, National Renewable Energy Laboratory: Golden, CO, USA 1998.
  • 28. Gebreegziabher T., Oyedun A., Hui C., Optimum biomass drying for combustion— A modelling approach, “Energy” 2013, 53, 67–73. https://doi.org/10.1016/j.energy. 2013.03.004.
  • 29. Liu Y., Aziz M., Kansha Y., Bhattacharya S., Tsutsumi A., Application of the self-heat recuperation technology for energy saving in biomass drying system, “Fuel Process. Technol.” 2014, 117, 66–74. https://doi.org/10.1016/j.applthermaleng.2017.08.156.
  • 30. Lebecki K., Dyduch Z., Fibich A., Śliż J., Ignition of a dust layer by a constant heat flux, “J. Loss Prev. Proc. Ind.” 2003, 16, No. 4, 243–248. https://doi.org/10.1016/S0950- 4230(03)00041-X.
  • 31. Dyduch Z., Majcher B., Ignition of a dust layer by a constant heat flux-heat transport in the layer, “J. Loss Prev. Proc. Ind.” 2006, 19, No. 2–3, 233–237. https://doi.org/10.1016/j.jlp.2005.06.027.
  • 32. Adamski R., Siuta D., Kukfisz B., Frydrysiak M., Prochon M., Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco, “Energies” 2021, 14, 5927. https://doi.org/10.3390/en14185927.
  • 33. McIlveen-Wright D., Huang Y., Rezvani S., Redpath D., Anderson M., Dave A., Hewitt N., A technical and economic analysis of three large scale biomass combustion plants in the UK, “Appl. Energy” 2013, 112, 396–404. https://doi.org/10.1016/j.apenergy.2012.12.051.
  • 34. He X., Wang L., Experimental Determination and Modelling of Drying Process of Woody Biomass, IOP Conf. Ser. Earth Environ. Sci. 2020, 552, 012016. https://iopscience.iop. org/article/10.1088/1755-1315/552/1/012016/pdf.
  • 35. Havlík J., Dlouhý T., Indirect Dryers for Biomass Drying—Comparison of Experimental Characteristics for Drum and Rotary Configurations. “ChemEngineering” 2020, 4, No. 1, 18. https://doi.org/10.3390/chemengineering4010018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3463e59e-76ee-4b27-878e-b5123942c41f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.