PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical description of the operation of a hybrid barbotage reactors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Barbotage reactors such as airlift reactors (ALR) and bubble column reactors (BCR) due to their two-phase flow are the subject of many studies. Their basic version is used for lifting, mixing, and aeration of liquids, while their hybrid version, supplemented with additional elements, can serve as a rector for transport, lifting, and aeration of liquids. The subject of the research were two design variants of a hybrid barbotage reactor differing in the position of the nozzle for circulation and aeration, both filled with a moving bed. Based on the previously obtained measurement results, a simple mathematical equation was proposed to describe the impact of the type of construction and filling the hybrid reactor with a moving bed on the oxygen concentration and mixing conditions as well as on the transport of liquids. It was found that the greatest impact on the transport of liquid in the hybrid barbotage reactor (HBR) had the location of the H-nozzle, and filling the reactor with a moving bed had the greatest impact on the oxygen conditions and mixing of the liquid in the case of the HBR reactor.
Rocznik
Strony
73--86
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznań, Poland
  • Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznań, Poland
Bibliografia
  • [1] MERCHUK J., CAMACHO G.F., Bioreactors. Air-lift reactors, [In:] Michael C. Flickinger (Ed.), Encyclopedia of Industrial Biotechnology. Bioprocess, Bioseparation, and Cell Technology, John Wiley & Sons, Hoboken 2010, 887–953.
  • [2] HOSSEINIA N.S., SHANGA H., ROSS G.M., SCOTT J.A., Microalgae cultivation in a novel top-lit gas-lift open bioreactor, Biores. Techn., 2015, 192, 432–440. DOI: 10.1016/j.biortech.2015.05.092.
  • [3] ASADI A., ZINATIZADEHA A.A., LOOSDRECHT M.V., High rate simultaneous nutrients removal in a single air lift bioreactor with continuous feed and intermittent discharge regime. Process optimization and effect of feed characteristics, Chem. Eng. J., 2016, 301, 200–209. DOI: 10.1016/j.cej.2016.04.144.
  • [4] LI X., HUANG Y., YUAN Y., BI Z., LIU X., Startup and operating characteristics of an external air-lift reflux partial nitritation-ANAMMOX integrative reactor, Biores. Techn., 2017, 238, 657–665. DOI: 10.1016/j.biortech.2017.04.109.
  • [5] CHAI L.-Y., ALI M., MIN X.-B., SONG Y.-X., TANG C.-J., WANG H.-Y., YANG Z.-H., Partial nitrification in an air-lift reactor with long-term feeding of increasing ammonium concentrations, Biores. Technol., 2015, 185, 134–142. DOI: 10.1016/j.biortech.2015.02.091.
  • [6] AHMADI F., ZINATIZADEH A.A., ASADI A., MCKAY T., AZIZI S., Simultaneous carbon and nutrients removal and PHA production in a novel single air lift bioreactor treating an industrial wastewater, Environ. Technol. Innov., 2020, 18, 100776. DOI: 10.1016/j.eti.2020.100776.
  • [7] KUJAWIAK S.S., MAKOWSKA M., PAWLAK M., Efficiency of wastewater treatment in hybrid barbotage reactors with moving beds, Environ. Prot. Eng., 2020, 46 (3), 79–95. DOI: 10.37190/epe200305.
  • [8] DLUHÝ M., ŠEFČÍK M., BÁLEŠ V., Mathematical modelling of airlift bioreactor for waste water treatment, Com. Chem. Eng., 1994, 18, S725–S729. DOI: 10.1016/0098-1354(94)80118-5.
  • [9] BÁLES V., ANTOSOVA M., Mathematical and experimental modeling of phenol degradation in air-lift bioreactors, Environ. Eng. Pol., 1999, 1 (4), 209–216. DOI: 10.1007/s100220050024.
  • [10] TABIŚ B., STRYJEWSKI W.S., Mathematical modelling and stationary characteristics of a two-phase fluidised-bed bioreactor with external aeration, Chem. Proc. Eng., 2013, 34 (4), 435–449. DOI: 10.2478/cpe-2013-0036.
  • [11] DOMAŃSKI M., KARCZ J., BITENC M., KACPERSKI Ł., Numerical study of hydrodynamics in an externalloopair-lift reactor, Chem. Eng. Trans., 2011, 24, 1399–1404. DOI: 10.3303/CET1124234.
  • [12] KUJAWIAK S., MAKOWSKA M., MAZURKIEWICZ J., The effect of hydraulic conditions in barbotage reactorson aeration efficiency, Water, 2020, 12, 724–748. DOI: 10.3390/w12030724.
  • [13] HE Z., PETIRAKSAKUL A., MEESAPYA W., Oxygen-transfer measurement in clean water, J. KMITNB, 2003, 13 (1), 2546–2552, https.//docplayer.net/23826942-Oxygen-transfer-measurement-in-clean-water.html (accessed on 24 March 2022).
  • [14] CAPELA S., GILLOT S., HÉDUIT A., Comparison of oxygen-transfer measurement methods under process conditions, Water Environ. Res., 2004, 76, 183–188. DOI: 10.2175/106143004X141726.
  • [15] Polish Patent Office, granted patent No. 236340. Installation for transportation, aeration and treatment of sewage, preferably the domestic waste.
  • [16] KUJAWIAK S., MAKOWSKA M., MATZ R., GAWROŃSKA A., The efficiency of the aeration process in airlift reactors with moving beds, Tech. Trans., 2017, 3, 167–172. DOI: 10.4467/2353737XCT.17.039.6350.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3461b877-60fe-4f8e-8203-447293ee186a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.