PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of welding parameters on decarburization in heat affected zone of dissimilar weldments after post weld heat treatment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper aims to assess an influence of thermal welding parameters on microstructural evolution in the weld adjacent zone of P91 steel, overlayed by austenitic consumables, after post weld heat treatment. Design/methodology/approach: Analysis of the width of decarburized layer on microphotographs of overlayed specimens after tempering 750°C, 7 and 18 hours. Specimens were made by using different heat input and preheating temperature parameters. Findings: It is shown that with increase of the heat input energy, the width of the resulting decarbonized layer decreases linearly; the effect of heating temperature on the layer width is parabolic with a minimum at a temperature of ~195°C. Research limitations/implications: Future research may include comparison of the creep rupture strength of the weldments, made with different welding parameters, to assess the influence of kinetics of decarburization and variation of the parameters on creep rupture strength. Practical implications: Results permit to achieve minimization of rate of carbon diffusion in the weld adjacent zone of the HAZ by means of variation of welded parameters. Originality/value: Experimentally was confirmed a role of high-diffusivity paths (grain boundaries) on carbon diffusion in the HAZ of dissimilar weldments; found correlation between welding parameters and the rate of the diffusion during high temperature exposure.
Rocznik
Strony
23--31
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • E.O. Paton Electric Welding Institute NASU, 11 Malevich St., Kiev 03680, Ukraine
Bibliografia
  • [1] A. Di Gianfrancesco (ed.), Materials for Ultra- Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, 2017.
  • [2] S. Huysmans, J. Vekeman, C. Hautfenne, Dissimilar metal welds between 9Cr creep strength enhanced ferritic steel and advanced stainless steels-creep rupture test results and microstructural investigations, Welding in the World 61 (2017) 341-350. DOI: https://doi.org/10.1007/s40194-016-0414-9
  • [3] R.J. Christoffel, R.M. Curran, Carbon migration in welded joints at elevated temperatures, Welding Journal 35/9 (1956) 457-468.
  • [4] K. Laha, K.S. Chandravathi, K. Bhanu Sankara Rao, S.L. Mannan, D.H. Sastry, An assessment of creep deformation and fracture behavior of 2.25Cr–1Mo similar and dissimilar weld joints, Metallurgical and Materials Transactions A 32 (2001) 115-124. DOI: https://doi.org/10.1007/s11661-001-0107-9
  • [5] C.D. Lundin, K.K. Khan, D. Yang, Effect of carbon migration in Cr-Mo weldments on metallurgical structure and mechanical properties, Welding Research Council Bulletin 407 (1995) 1-49.
  • [6] J. Dobrzański, A. Zieliński, H. Krztoń, Mechanical properties and structure of the Cr-Mo-V low-alloyed steel after long-term service in creep condition, Journal of Achievements in Materials and Manufacturing Engineering 23/1 (2007) 39-42.
  • [7] G.D. Pigrova, B.S. Kabanov, V.M. Sedov, The effect of long-term service on carbide transformations in Cr- Mo steels, Proceedings of the Proceedings of the 11th International Scientific Conference "Achievements in Mechanical and Materials Engineering", AMME'2002, Gliwice-Zakopane, 2002, 439-442.
  • [8] C. Sudha, A.L.E. Terrance, S.K. Albert, M. Vijayalakshmi, Systematic study of formation of soft and hard zones in the dissimilar weldments of Cr-Mo steels, Journal of Nuclear Materials 302/2-3 (2002) 193-205. DOI: https://doi.org/10.1016/S0022- 3115(02)00777-8
  • [9] R. Anand, C. Sudha, T. Karthikeyan, A.L.E. Terrance, S. Saroja, M. Vijayalakshmi, Effectiveness of Ni-based diffusion barriers in preventing hard zone formation in ferritic steel joints, Journal of Materials Science 44 (2009) 257-265. DOI: https://doi.org/10.1007/s10853- 008-3052-9
  • [10] H. Heuser, C. Jochum, W. Bendick, B. Hahn, Welding of dissimilar joints of new power plant steels, Proceedings of the IIW International Conference Safety and Reliability of Welded Components in Energy and Processing Industry, Graz, Austria, 2008, 217-223.
  • [11] T. Helander, C. Henrik, M. Andersson, M. Oskarsson, Structural changes in 12-2.25% Cr weldments - an experimental and theoretical approach, Materials at High Temperature 17/3 (2000) 389-396. DOI: https://doi.org/10.1179/mht.2000.17.3.003
  • [12] A. Varma, R.K. Yadavalli, Failure analysis of a reheater tube dissimilar metal weld failure in a 500 MW power plant, Engineering Failure Analysis 118 (2020) 104851. DOI: https://doi.org/10.1016/j.engfailanal.2020.104851
  • [13] S.J. Brett, Type IIIa cracking in 1/2CrMoV steam pipework systems, Science and Technology of Welding and Joining 9/1 (2004) 41-45. DOI: https://doi.org/10.1179/136217104225017134
  • [14] D. Gandy, K. Coleman, Performance Review of T/P91 Steels, EPRI, Palo Alto, CA, 2002, 1004516.
  • [15] J. Frei, B.T. Alexandrov, M. Rethmeier, Low heat input gas metal arc welding for dissimilar metal weld overlays part III: hydrogen-assisted cracking susceptibility, Welding in the World 63 (2019) 591- 598. DOI: https://doi.org/10.1007/s40194-018-0674-7
  • [16] D. Bourgeois, Hydrogen assisted crack in dissimilar metal welds for subsea service under cathodic protection, PhD Thesis, The Ohio State University, 2015.
  • [17] J.A. Fenske, I.M. Robertson, R. Ayer, M. Hukle, D. Lillig, B. Newbury, Microstructure and hydrogen-induced failure mechanisms in Fe and Ni alloy weldments, Metallurgical and Materials Transactions A 43 (2012) 3011-3022. DOI: https://doi.org/10.1007/s11661-012-1129-1
  • [18] Y.Y. You, R.K. Shiue, R.H. Shiue, C. Chen, The study of carbon migration in dissimilar welding of the modified 9Cr-1 Mo steel, Journal of Materials Science Letters 20 (2001) 1429-1432. DOI: https://doi.org/10.1023/A:1011616232396
  • [19] R. Anand, C. Sudha, V.T. Paul, S. Saroja, Microstructural changes in Grade 22 ferritic steel clad successively with Ni-based and 9Cr filler metals, Welding Journal 89 (2010) 65s-74s.
  • [20] M. Sireesha, S.K. Albert, S. Sundaresan, Thermal cycling of transition joints between modified 9Cr-1Mo steel and Alloy 800 for steam generator application, International Journal of Pressure Vessels and Piping 79/12 (2002) 819-827. DOI: https://doi.org/10.1016/S0308-0161(02)00104-7
  • [21] K. Karthick, S. Malarvizhi, V. Balasubramanian, A. Gourav Rao, Tensile properties variation across the dissimilar metal weld joint between modified 9Cr-1Mo ferritic steel and 316LN stainless steel at RT and 550°C, Metallography, Microstructure and Analysis 7 (2018) 209-221. DOI: https://doi.org/10.1007/s13632- 018-0430-9
  • [22] M. Urzynicok, R. Jachym, K. Kwiecinski, P. Mariani, Y. Minami, Application of EPRI87 in dissimilar welding austenitic-martensitic welded joints of TEMPALOY AA-1 and T92 steel grades, Proceedings of the 7th International Conference Advances in Materials Technology for Fossil Fuel Power Plants, Waikoloa, Hawaii, USA, 2013, 992-1005.
  • [23] K. Coleman, D. Gandy, Alternative filler materials for DMWs involving P91 materials, Proceedings of the 5th International Conference Advances in Materials Technology for Fossil Fuel Power Plants, Marco Island, Florida, USA, 2007, 940-967.
  • [24] S. Mahajan, R. Chhibber, Investigations on dissimilar welding of P91/SS304L using Nickel-based electrodes, Materials and Manufacturing Processes 35/9 (2020) 1010-1023. DOI: https://doi.org/10.1080/10426914.2020.1755041
  • [25] C. Pandey, J.G. Thakare, P.K. Taraphdar, P. Kumar, A. Gupta, S. Sirohi, Characterization of the soft zone in dissimilar welds joint of 2.25Cr-1Mo and lean duplex LDX2101 steel, Fusion Engineering and Design 163 (2021) 112147. DOI: https://doi.org/10.1016/j.fusengdes.2020.112147
  • [26] S. Kumar, S. Sirohi, R.S. Vidyarthy, A. Gupta, C. Pandey, Role of the Ni-based filler composition on micro-structure and mechanical behavior of the dissimilar welded joint of P22 and P91 steel, International Journal of Pressure Vessels and Piping 193 (2021) 104473. DOI: https://doi.org/10.1016/j.ijpvp.2021.104473
  • [27] G. Dak, C. Pandey, A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application, Journal of Manufacturing Processes 58 (2020) 377-406. DOI: https://doi.org/10.1016/j.jmapro.2020.08.019
  • [28] S. Singh, A.B. Singh, M. Kumar, M.L. Meena, G.S. Dangayach, Dissimilar Metal Welds used in AUSC Power Plant: Fabrication and Structural Integrity Issues, IOP Conference Series: Materials Science and Engineering 1017 (2021) 012022. DOI: https://doi.org/10.1088/1757-899X/1017/1/012022
  • [29] D.D. Awale, A.R. Ballal, M.M. Thawre, Dissimilar weld joints of P91 and 316LN for power plants Applications-A review, Materials Today: Proceedings 28/4 (2020) 2505-2510. DOI: https://doi.org/10.1016/j.matpr.2020.05.003
  • [30] A.K. Maurya, C. Pandey, R. Chhibber, Dissimilar welding of duplex stainless steel with Ni alloys: A review, International Journal of Pressure Vessels and Piping 192 (2021) 104439. DOI: https://doi.org/10.1016/j.ijpvp.2021.104439
  • [31] S. Sirohi, C. Pandey, A. Goyal, Role of the Ni-based filler (IN625) and heat-treatment on the mechanical performance of the GTA welded dissimilar joint of P91 and SS304H steel, Journal of Manufacturing Processes 65 (2021) 174-189. DOI: https://doi.org/10.1016/j.jmapro.2021.03.029
  • [32] S. Sirohi, C. Pandey, A. Goyal, Characterization of structure-property relationship of martensitic P91 and high alloy ferritic austenitic F69 steel, International Journal of Pressure Vessels and Piping 188 (2020) 104179. DOI: https://doi.org/10.1016/j.ijpvp.2020.104179
  • [33] Y.M. Lakhtin, Physical metallurgy and heat treatment, Third Edition, Metallurgy, Moscow, 1984 (in Russian).
  • [34] ImageJ. Image Processing and Analysis in Java. Available from: https://imagej.nih.gov/ij/
  • [35] R. O’Hayre, Materials kinetics fundamentals: principles, processes, and applications, Wiley, 2015.
  • [36] H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag, Berlin-Heidelberg, 2007. DOI: https://doi.org/10.1007/978-3-540-71488-0
  • [37] Y. Ushigami, T. Kumano, T. Haratani, S. Nakamura, S. Takebayashi, T. Kubota, Secondary Recrystallization in Grain-Oriented Silicon Steel, Materials Science Forum 467-470 (2004) 853-862. DOI: https://doi.org/10.4028/www.scientific.net/MSF.467- 470.853
  • [38] M. Zorc, A. Nagode, J. Burja, B. Kosec, B. Zorc, Surface Decarburization of the Hypo-Eutectoid Carbon Steel C45 during Annealing in Steady Air at Temperatures T > AC1, Metals 8/6 (2018) 425. DOI: https://doi.org/10.3390/met8060425
  • [39] D. Li, D. Anghelina, D. Burzic, W. Krieger, E. Kozeschnik, Investigation of Decarburization in Spring Steel Production Process – Part II: Simulation, Steel Research International 80/4 (2009) 304-310. DOI: https://doi.org/10.2374/SRI08SP070
  • [40] J. Konieczny, Z. Rdzawski, P. Bańbura, B. Preficz, Influence of aging time and temperature on diffusion of alloyed copper, Journal of Achievements in Materials and Manufacturing Engineering 73/1 (2015) 27-35.
  • [41] M. Tamura, F. Abe, K. Shiba, H. Sakasegawa, H. Tanigawa, Larson-Miller Constant of Heat-Resistant Steel, Metallurgical and Materials Transactions A 44/6 (2013) 2645-2661. DOI: https://doi.org/10.1007/s11661-013-1631-0
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3461593e-bec1-4daf-8a30-658e02741be3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.