PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effects of metal-ceramic anticorrosion coating on the performance of ballastless tracks at high temperature

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A highly reflective metal-ceramic anticorrosion coating is proposed to address temperature-induced track arching and concomitant damage of the China Railway Track System II ballastless tracks. The term ceramic refers to the inorganic phosphate coating binder and the metal pertains to the aluminite powder filler. Its thermal properties were studied through finite element modeling and heat radiation testing of uncoated and coated concrete samples and 1:1 ballastless track slab models. The metal–ceramic anticorrosion coating microstructure and constituent characterization were considered in its cooling efficacy analysis. The insulation temperature of the concrete test pieces increased as the thickness of the primer layer increased. At a primer layer thickness of 100 μm, 200 μm, and 300 μm, the corresponding insulation temperature was 8 °C, 18 °C, and 25 °C, respectively. Moreover, the temperature gradient, longitudinal stress, and vertical displacement of a track slab coated with a 300-μm metal-ceramic anticorrosion coating layer decreased by 29%, 57%, and 51.9%, respectively, which agreed well with the simulation results. The reduction in temperature transfer to the substrate, realized by the metal-ceramic anticorrosion coating, holds great promise for application in the construction industry.
Rocznik
Strony
329--342
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
  • School of Civil Engineering, Southeast University, Nanjing 210096, China
autor
  • School of Civil Engineering, Southeast University, Nanjing 210096, China
autor
  • School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • School of Civil Engineering, Southeast University, Nanjing 210096, China
autor
  • School of Civil Engineering, Southeast University, Nanjing 210096, China
autor
  • School of Civil Engineering, Southeast University, Nanjing 210096, China
Bibliografia
  • [1] Esveld C. Recent developments in slab track. European railway review, 2003.
  • [2] Esveld C. Modern railway track. London: MRT Productions; 2001.
  • [3] Wu B, Zhang Y, Zeng Z-P, et al. Study on mechanics and crack behavior of twin-block ballastless track on subgrade under the temperature and shinkage load. Journal of Railway Science and Engineering, 2011.
  • [4] Wang S, Sun L, Li Q, Wu Y. Temperature Measurement and Temperature Stress Analysis of Ballastless Track Slab. J Railway Eng Soc. 2009;2:52–5.
  • [5] Cao S, Deng F, Zhao C, et al. Study on Transient Temperature Field Characteristics of Ballastless Track Based on Meteorological Data. Railway Engineering. 2016.
  • [6] Zhao C-G, Xiao J-L, Di Y-Q, et al. Study on the Effect of Wide and Narrow Joints Damages on the Vertical Stability of Track Slab under the Load of Temperature Rising. Railway Standard Des. 2018;11:29–34.
  • [7] Zhou Y, Xiang J, Yu C, et al. Inversion analysis of damage of ballastless track in high-speed railway under temperature loads. J Railway Sci Eng. 2016;13(1):1–8.
  • [8] Wu B, Liu C, Zeng Z-P, et al. Research on the temperature field characteristic of CRTSII slab ballastless track. J Railway Eng Soc. 2016;33(3):29–33.
  • [9] Liu X, Zhang W, Xiao J, et al. Damage mechanism of broadnarrow joint of CRTSII slab track under temperature rise. KSCE J Civil Eng. 2019;23(5):2126–35.
  • [10] Cai XP, Luo BC, Zhong YL, et al. Arching mechanism of the slab joints in CRTSII slab track under high temperature conditions. Eng Fail Anal. 2019;98:95–108.
  • [11] Cao XJ, Tang BM, Zhu HZ, et al. Preparation and performance research of thermosetting heat-reflective coating for asphalt pavement. Adv Mater Res. 2010;150–151:44–50.
  • [12] Yang Y, Ding H, Cao C, et al. Application technology of fluorocarbon coating to railway concrete surface in marine environment with high temperature and high humidity. Railway Eng. 2017;10:135–8.
  • [13] Nahar NM, Sharma P, Purohit MM. Studies on solar passive cooling techniques for arid areas. Energy Convers Manage. 1999;40(1):89–95.
  • [14] Feng D, Zhang X. Development of heat reflection coating and observation of its road performance. J Highway Transp Res Dev. 2010;27(10):17–20.
  • [15] Jiang HL, Zhang JW, et al. Optimization of PCM coating and its influence on the temperature field of CRTSII ballastless track slab. Constr Build Mater. 2020;236:117498.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-345fd14f-0bac-4d5f-b515-4509aa612d06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.