PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure of rolled CuTi4 alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work is to investigate the microstructure of the heat treated and cold rolled commercial CuTi4 copper alloy. Design/methodology/approach: Observations an investigations of the structure were made on the JOEL transmission electron microscope (TEM), scanning electron microscope (SEM) Zeiss SUPRA 25 and diffractometer X’Pert Panalytical. Findings: Decomposition of supersaturated solid solution in that alloy is similar to the alloys produced in laboratory scale. The observed differences in microstructure after supersaturation were related to the presence of undissolved Ti particles and increased segregation of titanium distribution in copper matrix including microareas of individual grains. The mentioned factors influence the mechanism and kinetics of precipitation and subsequently the produced wide ranges of functional properties of the alloy. Research limitations/implications: Cold deformation (50% reduction) of the alloy after supersaturation changes the mechanism and kinetics of precipitation and provides possibilities for production of broader sets of functional properties. It is expected that widening of the cold deformation range should result in more complete characteristics of material properties, suitable for the foreseen applications. Similar effects can be expected after application of cold deformation after ageing. Practical implications: The elaborated research results present some utilitarian qualities since they can be used in development of process conditions for industrial scale production of strips from CuTi4 alloy of defined properties and operating qualities. Originality/value: The mentioned factors influence the mechanism and kinetics of precipitation and subsequently the produced wide ranges of functional properties of the Cu-Ti alloys.
Rocznik
Strony
26--39
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, Thermomechanical treatment of low-alloy copper alloys of the kind CuCo2Be and CuCo1NiBe, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 161-168.
  • [2] W. Głuchowski, J.P. Stobrawa, Z.M. Rdzawski, K. Marszowski, Microstructural characterization of high strength high conductivity Cu-Nb microcomposite wires, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 40-49.
  • [3] S.J. Skrzypek, W. Ratuszek, A. Bunsch, M. Witkowska, J. Kowalska, M. Goły, K. Chruściel, Crystallographic texture and anisotropy of electrolytic deposited copper coating analysis, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 264-268.
  • [4] W. Głuchowski, J.P. Stobrawa, Z.M. Rdzawski, Microstructure refinement of selected copper alloys strips processed by SPD method, Archives of Materials Science and Engineering 47/2 (2011) 103-109.
  • [5] A.D. Dobrzańska-Danikiewicz, K. Lukaszkowicz, Technology validation of coatings deposition onto the brass substrate, Archives of Materials Science and Engineering 46/1 (2010) 5-38.
  • [6] J. Romanowska, L. Bencze, A. Popovic, Thermodynamic properties of liquid Cu-Sb-Sn alloys by equilibrium saturation and Knudsen effusion mass spectrometric methods, Archives of Materials Science and Engineering 39/2 (2009) 69-74.
  • [7] J. Dutkiewicz, F. Masdeu, P. Malczewski, A. Kukuła, Microstructure and properties of a+p brass after ECAP processing, Archives of Materials Science and Engineering 39/2 (2009) 80-83.
  • [8] J.P. Stobrawa, Z.M. Rdzawski, Precipitation process of the Ni3Al phase in copper-based alloys, Journal of Achievements in Materials and Manufacturing Engineering 15/1-2 (2006) 21-26.
  • [9] Z. Gronostajski, K. Jaśkiewicz, Influence of monotonic and cyclic deformation sequence on behavior of CuSi3.5 silicon bronze, Journal of Achievements in Materials and Manufacturing Engineering 15/1-2 (2006) 39-46.
  • [10] J.P. Stobrawa, Z.M. Rdzawski, Deformation behaviour of dispersion hardened nanocrystalline copper, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 153-156.
  • [11] L.A. Dobrzański, Metal engineering materials, WNT, Warsaw, 2004 (in Polish).
  • [12] Z. Rdzawski, Alloyed copper, University of Technology Publishing House, Gliwice, 2009.
  • [13] S. Bzowski, S. Gorczyca, Kinetics of homogeneous transformations in solid solutions with cubic lattice, Metalurgia 29 (1981) 33 (in Polish).
  • [14] S. Nagarjuna, M. Srinivas, Grain refinement during high temperature tensile testing of prior cold worked and peak aged Cu-Ti alloys, Evidence of superplasticity, Materials Science and Engineering A498 (2008) 468-474.
  • [15] S. Nagarjuna, U. Chinta Babu, P. Ghosal, Effect of cryo-rolling on age hardening of Cu-1.5Ti alloy, Materials Science and Engineering A 491 (2008) 331-337.
  • [16] Z. Rdzawski, J. Stobrawa, W. Głuchowski, J. Konieczny, Thermomechanical processing of CuTi4 alloy, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 9-25.
  • [17] S. Bzowski, S. Gorczyca, Phase changes in copper-titanium alloys, Metallurgy 29 (1981) 79-113.
  • [18] M.J. Saarivirta, H.S. Cannon, Copper-titanium alloys, Metal Progress 76 (1959) 81-84.
  • [19] J.A. Cornie, A. Datta, W.A. Soffa, An electron microscopy study of precipitation in Cu-Ti sideband alloys, Metallurgical Transactions 4 (1973) 727-733.
  • [20] K. Sato, Direct Observations on precipitation in copper-titanium alloys, Transactions of the Japan Institute of Metals 7 (1966) 267-272.
  • [21] A. Datta, W.A. Soffa, The structure and properties of age hardened Cu-Ti alloys, Acta Metallurgica 24/11 (1976) 9871001.
  • [22] R. Knights, P. Wilkes, The precipitation of titanium in copper and copper-nickel base alloys, Acta Metallurgica 21 (1973) 1503-1514.
  • [23] D.E. Laughlin, J.W. Cahn, The crystal structure of the metastable precipitate in copper-based copper-titanium alloys, Scripta Materialia 8 (1974) 75-78.
  • [24] D.E. Laughlin, J.W. Cahn, Communication, Ordering in copper titanium alloys, Metallurgical Transactions 5 (1974) 972-974.
  • [25] T. Hakkarainen, Doctor of Technology Thesis, Helsinki, University of Technology, 1971.
  • [26] L. Blacha, G. Siwiec, A. Kościelna, A. Dudzik-Truś, Effect of titanium content on microstructure and properties of alloys of Cu-Ti, Materials Engineering 1 (2010) 42-45 (in Polish).
  • [27] T. Radetic, V. Radmilovic, W.A. Soffa, Electron microscopy observations of deformation twinning in a precipitation hardened copper-titanium alloy, Scripta Materialia 35/12 (1996) 1403-1409.
  • [28] S. Semboshi, T. Al.-Kassab, R. Gemma, R. Kirchheim, Microstructural evolution of Cu-1 at% Ti alloy aged In a hydrogen atmosphere ant its relation with the electrical conductivity, Ultramicroscopy 109 (2009) 593-598.
  • [29] L. Blacha, G. Siwiec, A. Kościelna, A. Dudzik-Truś, Effect of titanium content on microstructure and properties of alloys of Cu-Ti system, Materials Engineering 6 (2009) 520524 (in Polish).
  • [30] S. Nagarjuna, M. Srinivas, K. Balasubramanian, D.S. Sarma, The alloy content and grain size dependence of flow stress In Cu-Ti alloys, Acta Materialia 44/6 (1996) 2285-2293.
  • [31] L. Blacha, W. Szkliniarz, G. Siwiec, A. Kościelna, Effect of fabrication parameters in quality of ingots from Cu-Ti alloys, Ores And Non-Ferrous Metals 53/12 (2008) 784-789 (in Polish).
  • [32] D. Watanabe, Ch. Watanabe, R. Monzen, Effect of coherency on coarsening of second-phase precipitates in Cu-base alloys, Journal of Materials Science 43 (2008) 39463953.
  • [33] A.A. Hameda, L. Blaz, Microstructure of hot-deformed Cu-3.45 wt.T Ti alloy, Materials Science and Engineering A 254 (1998) 83-89.
  • [34] H.T. Michels, I.B. Cadoff, E. Levine, Precipitation hardening in Cu-3.6wt.% Ti, Metallurgical Transactions 31 (972) 667- 74.
  • [35] J. Dutkiewicz, Spinodal decomposition, ordering, and discontinuous precipitation in deformed and aged copper-titanium alloys, Met Technology 5 (1978) 333-340.
  • [36] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effects of cold work on precipitation hardening of Cu-4.5 mass% Ti alloy, Materials Transactions 36/8 (1995) 1058-66.
  • [37] M.J. Saarivirta, H.S. Canon, Copper-titanium alloys have high strength, Metal Progress 76 (1959) 81-84.
  • [38] N. Karlsson, An X-ray study of the phases in the copper-titanium system. Journal Institute of Metals 79 (1951) 391-405.
  • [39] T.B. Massalski, Binary alloys phase diagrams, 1990.
  • [40] J. Dutkiewicz, Spinodal- and discontinuous transformation mechanism and ordering processes in aged alloys with A1 lattice, Scientific Papers of AGH, Metallurgy and Foundry No 80, Cracow, 1977 (in Polish).
  • [41] J. Dutkiewicz, L. Lityńska, Employment of electron diffraction for investigation of spinodal transformation in Cu-Ti and Al-Zn alloys, Proceedings of the 5th Conference on Electron Microscopy of Solids, Warsaw-Jadwisin, 1978, 149-154 (in Polish).
  • [42] J. Dutkiewicz, Spinodal decomosition, ordering and discontinous precipitation in deformed and aged copper-titanium alloys, Metals Technology (1978) 333-340.
  • [43] J. Dutkiewicz, L. Lityńska, Ordering within percipitates in copper-nickel-titanium alloys, Journal of Materials Science 15 (1980) 2307-2310.
  • [44] G. Gottstein, Rekristallisation metallischer werkstoffe, Deutsche Gesellschaft fur Metallkunde, Germany, 1984.
  • [45] J. Stobrawa, Role of the electric strain energy in forming structure and morphology of coherent precipitations in selected copper alloys, Scientific Letters of Silesian University of Technlogy, Gliwice, 2004 (in Polish).
  • [46] P. Villars, L.D. Calvert, Pearson's Handbook of crystallographic data for intermetallic phases IV, ASM International, Ohio, 1991.
  • [47] H.X. Li, X.J. Hao, G. Zhao, S.M. Hao, Characteristics of the continuous coarsening and discontinuous coarsening of spinodally decomposed Cu-Ni-Fe alloy, Journal of Materials Science 36 (2001) 779- 784.
  • [48] J.-C. Zhao, M.R. Notis, Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy, Acta materialia 46/12 (1998) 4203-4218.
  • [49] M.A. Mangan, G.J. Shiflet, Tree dimensional investigation of CuTi discontinuous precipitation, Scripta Meterialia 37/4 (1997) 517-522.
  • [50] I.K. Razumov, Formation of intermediate ordered states on spinodal decomposition of alloys, Journal of Engineering Physics and Thermophysics 81/4 (2008) 826-833.
  • [51] V. Sofonea, K.R. Mecke, Morphological characterization of spinodal decomposition kinetic, The European Physical Journal B 8 (1999) 99-112.
  • [52] V. Daniel, H. Lipson, An X-ray study of the dissociation of an alloy of copper, iron and nickel, London A 181/987 (1943) 368-378.
  • [53] V. Lebreton, D. Pachoutinski, Y. Bienvenu, An investigation of microstructure and mechanical properties in Cu-Ti-Sn alloys rich in copper, Materials Science and Engineering A 508 (2009) 83-92.
  • [54] P. Prasad Rao, B.K. Agrawal, A.M. Rao, Comparative study of spinodal decomposition in symmetric and asymmetric Cu-Ni-Cr alloys, Journal of Materials Science 26 (1991) 1485-1496.
  • [55] H.-W. Kim, S.-B. Kang, N. Tsuji, Y. Minamino, Elongation in increase in ultra-fine Al-Fe-Si alloy sheets, Acta Materialia 54 (2006) 1785.
  • [56] J. Adamczyk, Theoretical physical metallurgy, Plastic strain, strengthening, and cracking, University of Technology Publishing House, Gliwice, 2005 (in Polish).
  • [57] Wei Yinghui, Wang Xiaotian, A new ordered phase forming during ageing in Cu-Ti alloys, Chinese Science Bulletin, 42/19 (1997) 1671-1672.
  • [58] E. Hornbogen, U. Koster, Recrystallization of Metalic Materials, F. Haesnner (Ed.), Verlag, Berlin, 1978, 159.
  • [59] E. Hornbogen, H. Kreye, Textures In research and practice, J. Grewen, G. Wassermann (Ed.), Springer-Verlag, Berlin 1969.
  • [60] M. Blicharski, S. Gorczyca, Recrystallisation with participation of the second phase, “Śląsk” Publishing House, Katowice, 1980 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3456bb94-ff2f-4826-828e-7b222b9f956f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.