PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of randomly distributed polypropylene fiber reinforcement on the shear behavior of sandy soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The inclusions of geosynthetic materials (fibers, geomembranes and geotextiles) is a new improvement technique that ensures uniformity in the soil during construction. The use of tension resisting discreet inclusions like polypropylene fibers has attracted a significant amount of attention these past years in the improvement of soil performance in a cost-efficient manner. A series of direct shear box tests were conducted on unreinforced and reinforced Chlef sand with different contents of fibers (0, 0.25, 0.5 and0.75%) in order to study the mechanical behavior of sand reinforced with polypropylene fibers. Samples were prepared at three different relative densities 30%, 50% and 80% representing loose, medium dense and dense states, respectively, and performed at normal stresses of 50, 100 and 200 kPa. The experimental results show that the mechanical characteristics are improved with the addition of polypropylene fibers. The inclusion of randomly distributed fibers has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is a function of fiber content, where it has been shown that the mechanical characteristics improve with the increase in fiber content up to 0.75%, this improvement is more significant at a higher normal stress and relative density.
Wydawca
Rocznik
Strony
151--159
Opis fizyczny
Bibliogr. 42 poz., tab., rys.
Twórcy
  • Laboratory of Materials Science and Environment (LMSE), Hassiba Benbouali University of Chlef, Algéria
  • Laboratory of Geomaterials, Hassiba Benbouali University of Chlef, Algéria
  • Universite Hassiba Benbouali de Chlef, Chlef, Algeria
  • Laboratory of Materials Science and Environment (LMSE), Hassiba Benbouali University of Chlef, Algéria
autor
  • Faculty of Engineering, Department of Civil Engineering, Geotechnical Laboratory, Sakarya University, Turkey
autor
  • Laboratory of Structures, Geotechnics and Risks, Hassiba Benbouali University of Chlef, Algeria
Bibliografia
  • [1] Abtahi, M.,, Ebadi, F., Hejazi, M., Sheikhzadeh, M. (2008). On the use of textile fibers to achieve mechanical soil stabilization. In: 4th Inttex cloth des conf, Dubrovnik, Croatia; 5–8 October.
  • [2] Ahmad, F., Mujah, D., Hazarika, H., and Safari, A. (2012). Assessing the potential reuse of recycled glass fibre in problematic soil applications, Journal of Cleaner Production, 35, 102–107.
  • [3] Al Refeai, O. (1991). Behaviour of granular soils reinforced with discrete randomly oriented inclusions. GeotextGeomembr,10, 319–33.
  • [4] Arab, A., Shahrour, I., Lancelot, L. (2011). Alaboratory study of liquefaction of partially saturated sand. J. Iber. Geol. 37(1), 29–36.
  • [5] ASTM D 422-63. Standard test methods for particle-size analysis of soils. West Conshohoken, PA: ASTM International.
  • [6] ASTM D 4253-00. Standard test methods for maximum index density and unit weight of soils using a vibratory table. West Conshohocken, PA: ASTM International.
  • [7] ASTM D4254-00. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. West Conshohoken, PA: ASTM International.
  • [8] ASTM D854-02. Standard test methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, PA: ASTM International.
  • [9] Belkhatir, M., Missoum, H., Arab, A., Della, N. and Schanz, T. (2011). The undrained shear strength characteristics of silty sand: an experimental study of the effect of fines. Geologia Croatica, 64(1), 31–39.
  • [10] Belkhatir, M., Schanz T., Arab, A. (2013). Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures, Environ. Earth Sci., 70(6), 2469–2479. doi.org/10.1007/s12665-013-2289-z
  • [11] Benessalah,I., Arab, A., Villard, P., Sadek, M., Kadri, A. (2015). Laboratory study on shear strength behaviour of reinforced sandy soil: effect of glass-fibers content and other parameters. Arab J SciEng 41(4), 1343–1353.
  • [12] Consoli C, Festugato L, Heineck S. (2009). Strain-hardening behaviour of fiber reinforced sand in view of filament geometry. Geosynth Int, 16, 109–15.
  • [13] Della, N., Arab, A., Belkhatir, M. (2011). A laboratory study of the initial structure and the overconsolidation effects on the undrained monotonic behavior of sandy soil from Chlef region in northern Algeria. Arab. J. Geosci. 4(5–6), 983–991.
  • [14] Denine, S., Della, N., Dlawar, M. R., Sadok, F., Canou, J., Dupla, J.-C. (2016). Effect of geotextile reinforcement on shear strength of sandy soil: laboratory study. Stud Geotech et Mech, 38 (4), 3–13.
  • [15] Diambra, A., Ibraim, E., Wood, D.M., Russell, A.R. (2010). Fibre reinforced sands: experiments and modelling. Geotextiles and Geomembranes, 28(3), 238– 250.
  • [16] Durville, J.L., Meneroud, J.P. (1982). Phenomenes geomorphologiques induits par le seisme d’El-Asnam, Algerie. Bull. Liaison Labo. P. et Ch., 120, juillet-aout, , 13–23.
  • [17] Ghiassian, H., Jamshidi, R., Tabarsa. A. (2008). Dynamic performance of Toyoura sand reinforced with randomly distributed carpet waste strips. In: 4th Dec geol earth eng and soil dyn conf, Sacramento, California, USA, May, 18–22.
  • [18] Gray, D.H., Ohashi, H., (1983). Mechanics of fiber reinforcement in sands. Journal of Geotechnical Engineering, ASCE 109(3), 335–353.
  • [19] Greenwood, J., Norris, E., Wint, J. (2004). Assessing the contribution of vegetation to slope stability. Geotech Eng, Proc the ICE, GE4, 199–207.
  • [20] Greenwood J. SLIP4EX (2006). a program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. GeotechGeolEng,24, 449–65.
  • [21] Haeri, S.M., Noorzad, R., Oskoorouchi, A.M., (2000. Effect of geotextile reinforcement on the mechanical behavior of sand, Geotextiles and Geomembranes, 18(6), 385–402.
  • [22] Ibraim, E., Diambra, A., Muir Wood, D., Russell, A.R. (2010). Static liquefaction of fibre reinforced sand under monotonic Loading. Geotextiles and Geomembranes, 28 (4), 374–385.
  • [23] Jamshidi, R., Towhata, I., Ghiassian, H., Tabarsa, R. (2010). Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dyn Earthq Eng, 30, 438–46.
  • [24] Kim, Y.S., Oh, S.W., Cho, D.S. (2010) Effect of non-woven geotextile reinforcement on mechanical behavior of sand, J. Korean Geosynthetics Society, 9(4), 39–45.
  • [25] Krim, A., Zitouni, Z., Arab, A., Belkhatir, M. (2013) Identification of the behavior of sandy soil to static liquefaction and microtomography. Arab. J. Geosci. 6(7), 2211–2224.
  • [26] Liu, J., Wang, G., Kamai, T., Zhang, F, Yang, J., Shi, B. (2011). Static liquefaction behaviour of saturated fiber-reinforced sand in undrained ring-shear tests, Geotextile and Geomembranes, 29(5), 462–471.
  • [27] Maher, M.H., Gray, D.H. (1990). Static response of sand reinforced with fibres. Journal of Geotechnical Engineering, ASCE 116 (11), 1661–1677.
  • [28] Michalowski, R.L., Cermak, J. (2002). Strength anisotropy of fiber-reinforced sand. Computers and Geotechnics 29(4), 279–299.
  • [29] Michalowiski L, Zhao A. (1996). Failure of fiber-reinforced granular soils. J Geotech Eng ASCE, 122(3), 226–34.
  • [30] Nouri, S., Nechnech, A., Lamri, B., Lurdes Lopes, M. (2015). Triaxial test of drained test reinforced with plastic layers, Arab. J.Geosci., 9(1), 1–9.
  • [31] Prabakar, J., Sridhar, R.S. (2002). Effect of random inclusion of sisal fibre on strength behaviour of soil, Construction and Building Materials, 16(2), 123–131.
  • [32] Park, T., Ann Tan, S., (2005). Enhanced performance of reinforced soil walls by the inclusion of short fiber, Geotexiles and Geomembranes 23(4), 348–361.
  • [33] Ranjan, G., Vasan, R.M., and Charan, H.D. (1994). Behaviour of plastic fiber reinforced sand. Geotextiles and Geomembranes, 13(8), 555–565.
  • [34] Romero, R.J. (2003). Development of a constitutive model for fiber-reinforced soils. Dissertation submitted in partial fulfillment for the requirements of the Doctoral Degree, University of Missouri-Columbia.
  • [35] Santoni L, Tingle S, Webster L. (2001). Engineering properties of sand–fiber mixtures for road construction, J. Geotech. Geoenviron. Eng., 127(3), 258–68.
  • [36] Denine, S., Della N., Feia S., Muhammed, R.D., Canou, J., Dupla, J.-C. (2018). Shear behavior of geotextile-reinforced Chlef sand in the Mediterranean region: Laboratory investigation, Marine Georesources&Geotechnology, accepted, published online.
  • [37] Tingle, S., Santoni, S., Webster, L., (2002). Full-scale field tests of discrete fiber-reinforced sand, J. Trans. Eng. ASCE;128(1): 9–16.
  • [38] Wei, L., Chai, S.X., Zhang, H.Y., Qian Shi, Q. (2018). Mechanical properties of soil reinforced with both lime and four kinds of fiber, Construction and Building Materials, 172, 300308.
  • [39] Khebizi, W., Della, N., Denine, S., Canou? J., Dupla, J-C. (2018). Undrained behaviour of polypropylene fibre reinforced sandy soil under monotonic loading, Geomechanics and Geoengineering, 14(1), 3040.
  • [40] Wu, T., McOmber, M., Erb, T., Beal, E. (1988). Study of soil–root interaction. J GeotechEng ASCE; 114 (12):1351–1375.
  • [41] Yetimoglu, T., Salbas, O.A. (2003). Study on shear strength of sands reinforced with randomly distributed discrete fibers, Geotextiles and Geomembranes, 21 (2), 103–110.
  • [42] Zornberg, G. (2002). Discrete framework for limit equilibrium analysis of fiber reinforced soil. Géotechnique, 52(8), 593–604
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34529dc1-1b47-466b-acef-4781e7df3f82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.