PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Impact Resistance on a Knitted Prosthesis Based on Polypropylene and Acrylic Cements Based on Poly(methyl methacrylate)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Porównanie odporności na uderzenia dzianej protezy wykonanej z polipropylenu oraz cementu akrylowego na bazie poli(metakrylanu metylu)
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to compare the physical and mechanical properties of known prostheses for cranioplasty: knitted Codubix based on polypropylene and Modela-cryl resin based on PMMA. It was expected that the study would allow to check whether it is possible to combine their properties, which should enable the preparation of a new material with properties combining the best features of both components. Physico-chemical and mechanical properties were evaluated. It was found that the two materials meet the requirements for chemical purity, ensuring the safety of their use. Regarding the mechanical properties, the energy of impact diffusion for two types of prostheses was determined applying the Drop Tower technique. The polymerisation heat of Modela-cryl resin was determined in real time using the DSC technique.
PL
Celem pracy było porównanie właściwości fizycznych i mechanicznych znanych protez do kranioplastyki: dzianej Codubix na bazie polipropylenu i żywicy Modela-cryl na bazie PMMA. Oczekiwano, że badanie pozwoli sprawdzić, czy możliwe jest połączenie ich właściwości, co powinno pozwolić na przygotowanie nowego materiału o właściwościach łączących najlepsze cechy obu komponentów. Oceniono właściwości fizykochemiczne i mechaniczne. Stwierdzono, że oba materiały spełniają wymagania czystości chemicznej, zapewniając bezpieczeństwo ich stosowania. Jeśli chodzi o właściwości mechaniczne, określono energię dyfuzji uderzeniowej dla dwóch typów protez przy użyciu techniki Drop Tower. Określono ciepło polimeryzacji żywicy Modela-cryl w czasie rzeczywistym za pomocą techniki DSC.
Rocznik
Strony
67--74
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Tricomed SA, Świętojańska 5/9, 93-493 Lodz, Poland
  • Lodz University of Technology, Department of Material and Commodity, Sciences and Textile Metrology, Żeromskiego 116, 90-924 Lodz, Poland
  • Lodz University of Technology, Department of Material and Commodity, Sciences and Textile Metrology, Żeromskiego 116, 90-924 Lodz, Poland
  • Cracow University of Technology, Institute of Production Engineering, al. Jana Pawła II 37, 31-864 Cracow, Poland
  • Tricomed SA, Świętojańska 5/9, 93-493 Lodz, Poland
  • Medical University of Lodz, Department of Neurosurgery, al. Kościuszki 4, 90-419 Lodz, Poland
Bibliografia
  • 1. Kumar KVA, Singla NK, Gowda ME, Kumar D, Legha VS. Current Concepts in Restoring Acquired Cranial Defects. J Indian Prosthodont Soc. 2014; Dec. 14(S 1): 14-17.
  • 2. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016; 27(7): 118.
  • 3. Garcia-Gonzalez D, Jayamohan J, Sotiropoulos SN, Yoon S-H, Cook J, Sivio ur CR, Ariasa A, Jérusalem A.. On the mechanical behaviour of PEEK and HA cranial implants under impact loading. Journal of the Mechanical Behaviour of Biomedical Materials 2017; 69: 342-354.
  • 4. Goyal S, Goyal MK. Restoration of Large Cranial Defect for Cranioplasty with Alloplastic Cranial Implant Material: A Case Report. J Indian Prosthodont Soc. 2014; 14(2), 191-194.
  • 5. Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini, R. Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. Journal of Cranio-Maxillofacial Surgery 2012; 40(3): e65-e70.
  • 6. Lye KW, Tideman H, Merkx MAW, Jansen JA. Bone cements and their potential use in a mandibular endoprosthesis. Tissue Engineering – Part B: Reviews 2009; 15(4): 485-496.
  • 7. Song T, Qiu Z-Y, Cui F-Z. Biomaterials for reconstruction of cranial defects. Frontiers of Materials Science 2015; 9 (4): 346-354.
  • 8. Anchieta MV, Salles FA, Cassaro BD, Quaresma MM, Santos BF. Skull reconstruction after resection of bone tumors in a single surgical time by the association of the techniques of rapid prototyping and surgical navigation. Int J Comput Assist Radiol Surg. 2016; 11(10): 1919-1925.
  • 9. Simon P, Mohan J, Selvaraj S, Saravanan V, Pari P. Craniofacial Prosthetic Reconstruction Using Polymethyl Methacrylate Implant: A Case Report. J Indian Prosthodont Soc. 2014; 14(S 1): 303-307.
  • 10. Garcia-Gonzalez D, Rusinek A, Jankowiak T, Arias A. Mechanical impact behaviour of polyether–ether–ketone (PEEK). Composite Structures 2015; 124: 88-99.
  • 11. Jardini AL, Larosa MA, Macedo MF, Bernardes LF, Lambert CS, Zavaglia CAC, Maciel Filho R, Calderoni DR, Ghizoni E, Kharmandayan P. Improvement in Cranioplasty: Advanced Prosthesis Biomanufacturing. Procedia CIRP 2016; 49: 203-208.
  • 12. Han SE, Lim SY, Pyon JK, Mun GH, Bang SI, Oh KS. Aesthetic refinement of secondary cranioplasty using methyl methacrylate bone cements. Aesthetic Plast Surg. 2013; 37(3): 592-600.
  • 13. Bogu VP, Kumar YR, Kumar KA. 3D Printed, Customized Cranial Implant for Surgical Planning. Journal of The Institution of Engineers (India) 2016; Series C, 1-5.
  • 14. Lee SC, Wu CT, Lee ST, Chen PJ. Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci 2009; 16(1): 56-63.
  • 15. Kasprzak P, Tomaszewski G, Wróbel-Wiśniewska G, Zawirski M.. Polyprowpylene–polyester cranial prostheses prepared with CAD/CAM technology. Report of first 15 cases. Clinical Neurology and Neurosurgery 2011; 113 (4), 311-315.
  • 16. Chen YW, Shih CT, Cheng CY, Lin YC. The Development of Skull Prosthesis Through Active Contour Model. J Med. Syst. 2017; 41(10): 164.
  • 17. Cook F, Celentano D, Ramos-Grez J. Experimental-numerical methodology for the manufacturing of cranial prosthesis via laser forming. The International Journal of Advanced Manufacturing Technology 2016; 86 (5-8): 2187-2196.
  • 18. Khader BA, Towler M R. Materials and techniques used in cranioplasty fixation: A review. Materials Science and Engineering 2016; C. 66: 315-322.
  • 19. Wurm G, Tomancok B, Holl K, Trenkler J. Prospective study on cranioplasty with individual carbon fiber. Surg Neurol. 2004; 62: 510-521.
  • 20. Fricia M, Passanisi M, Salamanna F, Parrilli A, Giavaresi G, Fini M. Osteolintegration in Custom-made Porous Hydroxyapatite Cranial Implants: From Reconstructive Surgery to Regenerative Medicine. World Neurosurg. 2015; 84(2) 591: e11-6.
  • 21. Vaishya R, Agarwal A K, Tiwari M, Vaish A, Vijay V, Nigam Y. Medical textiles in orthopedics: An overview. Journal of Clinical Orthopaedics and Trauma 2018; 9: S 1, S26-S33.
  • 22. Teo A JT, Mishra A, Park I, Kim Y, Park W, Yoon Y.. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomaterials Science & Engineering 2016; 2 (4): 454-472.
  • 23. Taylor D. The failure of polypropylene surgical mesh in vivo. Journal of the Mechanical Behavior of Biomedical Materials 2018; 88: 370-376.
  • 24. Roberts DE. Heats of polymerization: A summary of published values ant their relation structure. J Res Natl Bur Stand. 1950; 44: 221-32.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-344f630a-cac8-4a75-b3c2-20db88cbbf0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.