PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of thermal-flow processes in the ejector-condenser for selected geometrical parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of analysis of thermal-flow processes in the ejector-condenser for selected geometrical param-eters using CFD (Computational Fluid Dynamics) methods. The ejector-condenser is the water-driven, two-phase ejector responsible for creating a sub-pressure allowing exhaust gases (steam and CO2 mixture) to be entrained, condensing steam, and then increasing the pressure above the atmospheric conditions. The axisymmetric numerical model was developed to take into account multiphase, turbulent flow with steam condensation in the presence of inert gas. The influence of the selected geometrical parameters, such as the motive nozzle's and mixing chamber's diameters on the ejector performance was investi-gated. CFD analysis results are presented in the form of developed scalar distributions as well as pressure, temperature and steam mass flow changes along the flow path. Performances for different geometry modes were calculated and compared using parameters such as compression ratio, expansion ratio, mass entertainment ratio and condensation efficiency. The max-imum achieved compression ratio for the analyzed geometrical variants is 1.113 for the assumed mass entertainment ratio of 0.0295. The condensation efficiency varies in a range of 49.6%–91.4% depending on motive fluid inlet conditions and geom-etry mode.
Twórcy
autor
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Croquer, S., Poncet, S., & Aidoun, Z. (2016). Turbulence modeling of a single-phase R134a supersonic ejector. Part 1: Numerical benchmark. International Journal of Refrigeration, 61, 140-152. doi: 10.1016/j.ijrefrig.2015.07.030
  • [2] Aidoun, Z., Ameur, K., Falsafioon, M., & Badache, M. (2019). Current Advances in Ejector Modeling, Experimentation and Applications for Refrigeration and Heat Pumps. Part 1: Single-phase ejector. Inventions, 4(1). doi: 10.3390/inventions4010015
  • [3] de Oliveira Marum, V.J., Reis, L.B., Maffei, F.S., Ranjbarzadeh, S., Korkischko, I., dos Santos Gioria, R., & Meneghini, J.R. (2021). Performance analysis of a water ejector using Computational Fluid Dynamics (CFD) simulations and mathematical modeling. Energy, 220. doi: 10.1016/j.energy. 2021.119779
  • [4] Xiao, J., Wu, Q., Chen, L., Ke, W., Wu, C., Yang, X., Yu, L., & Jiang, H. (2022). Assessment of Different CFD Modeling and Solving Approaches for a Supersonic Steam Ejector Simulation. Atmosphere, 13(1), 144. doi: 0.3390/atmos13010144
  • [5] Ringstad, K.E., Allouche, Y., Gullo, P., Ervik, A., & Banasiak, K. (2022). A detailed review on CO2 two-phase ejector flow modeling. Thermal Science and Engineering Progress, 20. doi: 10.1016/j.tsep.2020.100647
  • [6] Koirala, R., Inthavong, K., & Date, A. (2022). Numerical study of flow and direct contact condensation of entrained vapor in water jet eductor. Experimental and Computational Multiphase Flow, 4, 291–303. doi: 10.1007/s42757-021-0118-2
  • [7] Zheng, P., Li, B., & Qin, Jingxuan. (2018). CFD simulation of two-phase ejector performance influenced by different operation conditions. Energy, 155, 1129–1145. doi 10.1016/j.energy.2018. 04.066
  • [8] Assari, M.R., Tabrizi, H.B., Beik, A.J.G., & Shamesri, K. (2022). Numerical Study of Water-air Ejector using Mixture and Two-phase Models. International Journal of Engineering, 35(2), 307−318. doi: 10.5829/IJE.2022.35.02B.06
  • [9] Sharma, D., Patwardhan, A., & Ranadek, V. (2018). Effect of turbulent dispersion on hydrodynamic characteristics in a liquid jet ejector. Energy, 164, 10–20. doi: 10.1016/j.energy.2018.08. 171
  • [10] Wang, X., Li, H., Dong, J., Wu, J. & Tu, J. (2020). Numerical study on mixing flow behavior in gas-liquid ejector. Experimental and Computational Multiphase Flow, 3, 108–112. doi: 10.1007/s42757-020-0069-z
  • [11] Majchrzyk, M., Dziurowicz, D., Hajda, M., Palacz, M., Bodys, J., Fingas, R., Smolka, J., & Nowak, A.J. (2020). Detailed numerical investigation of the CO two-phase ejector 3-D CFD model based on the flow visualisation experiments. Chemical Engineering and Processing - Process Intensification, 182. doi: 10.1016/j.cep. 2022.109195
  • [12] Madejski, P., Banasiak, K., Ziółkowski, P., Mikielewicz, D., Mikielewicz, J., Kuś, T., Karch, M., Michalak, P., Amiri, M., Dąbrowski, P., Stasiak, K., Subramanian, N., & Ochrymiuk, T. (2023). Development of a spray-ejector condenser for the use in a negative CO2 emission gas power plant, Energy, 283. doi: 10.1016/j.energy.2023.129163
  • [13] Reis, L.B., & dos Santos Gioria, R. (2021). Optimization of liquid jet ejector geometry and its impact on flow fields. Applied Thermal Engineering, 194. doi: 10.1016/j.applthermaleng.2021. 117132
  • [14] Sheha, A.A.A., Nasr, M., Hosien, M.A., & Wahba, E.M. (2018). Computational and Experimental Study on the Water-Jet Pump Performance. Journal of Applied Fluid Mechanics, 11(4), 1013–1020. doi: 10.29252/jafm.11.04.28407
  • [15] Zhang, J., Geng, J., Yang, S., Cheng, C. Zhu, G., Wang, C., Yang, Z., & Lye, Y. (2023). Influence of geometric parameters on the performance of ejector used in aeroengine air system. Thermal Science and Engineering Progress, 37(1). doi: 10.1016/j.tsep. 2022.101571
  • [16] Chen, W., Huang, C., Bai, Y., Chong, D., Yan, J., & Liu, J. (2020). Experimental and numerical investigation of two phase ejector performance with the water injected into the induced flow. International Journal of Advanced Nuclear Reactor Design and Technology, 2, 15–24. doi: 10.1016/j.jandt.2020.01.001
  • [17] Yan, J., Shu, Y., Jiang, J., & Wen, H. (2023). Optimization of Two-Phase Ejector Mixing Chamber Length under Varied Liquid Volume Fraction. Entropy, 2023, 25(1). doi: 10.3390/e25010007
  • [18] Mohammadi, A. (2019). An investigation of geometrical factors of multi-stage steam ejectors for air suction. Energy, 186. doi: 10.1016/j.energy.2019.07.138
  • [19] Foroozesh, F., Khoshnevis, A.B., & Lakzian, E. (2020). Investigation on the effects of water steam ejector geometry in the refrigeration systems using entropy generation assessment. Journal of Thermal Analysis and Calorimetry, 141, 1399–1411. doi: 10.1007/s10973-019-09128-1
  • [20] Dong, J., Hu, Q., Yu, M., Han, Z., Cui, W., Liang, D., Ma, H., & Pan, X. (2020). Numerical investigation on the influence of mixing chamber length on steam ejector performance. Applied Thermal Engineering, 174. doi: 10.1016/j.applthermaleng.2020. 115204
  • [21] Han, Y., Wang, X., Sun, H., Zhang, G., Guo, L., & Tu, J. (2019). CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance. Energy, 167. doi: 10.1016/j.energy.2018.10.195
  • [22] Weber, C. (1931). On the disintegration of a liquid jet. Zeitschrift für Angewandte Mathematik und Mechanik, 11(2), 136–154. doi: 10.1002/zamm.19310110207
  • [23] Mikielewicz, D., Amiri, M., & Mikielewicz, J. (2022). Direct-contact condensation from vapour-gas mixture in a spray ejector condenser for negative CO2 power plant. 2nd International Conference on Negative CO2 Emissions, June 14–17, Gothenburg, Sweden.
  • [24] He, S., Li, Y., & Wang, R.Z. (2009). Progress of mathematical modelling on ejectors. Renewable and Sustainable Energy Reviews, 18(3), 1760–1780. doi: 10.1016/j.rser.2008.09.032
  • [25] Colarossi, M., Trask, N., Schmidt. D.P., & Bergander, M.J. (2012). Multidimensional modeling of condensing two-phase ejector flow. International Journal of Refrigeration, 35(2), 290–299. doi: 10.1016/j.ijrefrig.2011.08.013
  • [26] Ameur, K., Aidoun, Z., & Ouzzane, M. (2016). Modeling and numerical approach for the design and operation of two-phase ejectors. Applied Thermal Engineering, 109, 809–818. doi: 10.1016/j.applthermaleng.2014.11.022
  • [27] Madejski, P., Michalak, P., Karch, M., Kuś, T., & Banasiak, K. (2022). Monitoring of Thermal and Flow Processes in the Two-Phase Spray-Ejector Condenser for Thermal Power Plant Applications. Energies, 15(19). doi: 10.3390/en15197151
  • [28] Madejski, P., Karch, M., Michala, P., & Banasiak, K. (2024). Conceptual Design of Experimental Test Rig for Research on Thermo-Flow Processes During Direct Contact Condensation in the Two-Phase Spray-Ejector Condenser. Journal of Energy Resources Technology, 146(3). doi: 10.1115/1.4064194
  • [29] Ziółkowski, P., Madejski, P., Amiri, M., Kuś, T., Stasiak, K., Subramanian, N., Pawlak-Kruczek, H., Badur, J., Niedźwiedzki, Ł., & Mikielewicz, D. (2021). Thermodynamic Analysis of Negative CO2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software. Energies, 14(19), 6304. doi: 10.3390/en14196304
  • [30] Wagner, W., & Kretzschmar, H.-J. (2008). International Steam Tables—Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97. Tables, Algorithms, Diagrams, and CD-ROM Electronic Steam Tables – All of the Equations of IAPWS-IF97 Including a Complete Set of Supplementary Backward Equations for Fast Calculations of Heat Cycles, Boilers, and Steam Turbines, 2nd Ed. Springer, New York.
  • [31] Linstrom, P.J., & Mallard, W.G. (2001). The NIST Chemistry WebBook: A Chemical Data Resource on the. Journal of Chemical and Engineering Data, 46(5), 1059–1063. doi: 10.1021/ je000236i
  • [32] Armenante, P.M., & Kirwan, D.J. (1989). Mass Transfer to microparticles in agitated Systems. Chemical Engineering Science, 44(12), 2781–2796. doi: 10.1016/0009-2509(89)85088-2
  • [33] Borishanskiy, V.M. (1977). Effect of Uncondensable Gas Content on Heat Transfer in Steam Condensation in a Vertical Tube. Heat Transfer - Soviet Research, 9, 35–42.
  • [34] Madejski, P., Karch, M., Michalak, P., & Banasiak, K. (2024). Conceptual Design of Experimental Test Rig for Research on Thermo-Flow Processes During Direct Contact Condensation in the Two-Phase Spray-Ejector Condenser. Journal of Energy Resources Technology, 146(3), 1–39. doi: 10.1115/1.4064194
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34496ea5-7d49-4805-a07d-d187d970be6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.