PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sea level prediction using climatic variables: a comparative study of SVM and hybrid wavelet SVM approaches

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change is expected to adversely afect the coastal ecosystem in many ways. One of the major consequences of climate change in coastal areas is sea level rise. In order to manage this problem efciently, it is essential to obtain reasonably accurate estimates of future sea level. This study focuses essentially on the identifcation of climatic variables infuencing sea level and sea level prediction. Correlation analysis and wavelet coherence diagrams were used for identifying the infuencing variables, and support vector machine (SVM) and hybrid wavelet support vector machine (WSVM) techniques were used for sea level prediction. Sea surface temperature, sea surface salinity, and mean sea level pressure were observed to be the major local climatic variables infuencing sea level. Halosteric efect is found to have a major impact on the sea level. The variables identifed were subsequently used as predictors in both SVM and WSVM. WSVM employs discrete wavelet transform to decompose the variables before being input to the SVM model. The performance of both the models was compared using statistical measures such as root mean square error (RMSE), correlation coefcient (r), coefcient of determination (r 2 ), average squared error, Nash–Sutclife efciency, and percentage bias along with graphical indicators such as Taylor diagrams and regression error characteristic curves. Results indicate that the WSVM model predicted sea level with an RMSE of 0.029 m during the training and 0.040 m during the testing phases. The corresponding values for SVM are 0.043 m and 0.069 m, respectively. Also, the other statistical measures and graphical indicators suggest that WSVM technique outperforms the SVM approach in the prediction of sea level.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1779--1790
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
  • Department of Civil Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
  • Department of Civil Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
  • Department of Civil Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
Bibliografia
  • 1. Chan YT (1996) Wavelet basics. Kluwer Academic Publishers Group, Netherlands
  • 2. Chang B, Guan J, Aral MM (2014) Scientific discourse: climate change and sea-level rise. J Hydrol Eng 20:1–14. https://doi.org/10.1061/(asce)he.1943-5584.0000860
  • 3. Cui M, Storch HV, Zorita E (1995) Coastal sea level and the large-scale climate state a downscaling exercise for the Japanese Islands. Tellus A 47:132–144. https://doi.org/10.3402/tellusa.v47i1.11498
  • 4. Das SK, Samui P, Sabat AK (2011) Prediction of field hydraulic conductivity of clay liners using an artificial neural network and support vector machine. Int J Geomech 12:606–611. https://doi.org/10.1061/(asce)gm.1943-5622.0000129
  • 5. Dorado J, RabuñAL JR, Pazos A, Rivero D, Santos A, Puertas J (2003) Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ANN and GP. Appl Artif Intell 17:329–343. https://doi.org/10.1080/713827142
  • 6. Durack PJ, Wijffels SE, Gleckler PJ (2014) Long-term sea-level change revisited: the role of salinity. Environ Res Lett 9:114017. https://doi.org/10.1088/1748-9326/9/11/114017
  • 7. Elhag M, Psilovikos A, Sakellariou-Makrantonaki M (2013) Land use changes and its impacts on water resources in Nile Delta region using remote sensing techniques. Environ Dev Sustain 15:1189–1204. https://doi.org/10.1007/s10668-013-9433-5
  • 8. Elshorbagy A, Simonovic SP, Panu US (2000) Performance evaluation of artificial neural networks for runoff prediction. J Hydrol Eng 5:424–427
  • 9. Gill MK, Asefa T, Kemblowski MW, Mckee M (2006) Soil moisture prediction using support vector machines. J Am Water Resour 42:1033–1046
  • 10. Gunn SR (1998) Support vector machines for classification and regression. Image speech and intelligent systems Technical Report
  • 11. Haykin S (2009) Neural networks and learning machines, 3rd edn. Pearson Prentice Hall, Upper Saddle River
  • 12. Heyen H, Zorita E, Storch HV (1996) Statistical downscaling of monthly mean North Atlantic air-pressure to sea level anomalies in the Baltic Sea. Tellus A 48:312–323. https://doi.org/10.3402/tellusa.v48i2.12062
  • 13. Hsieh WW (2009) Machine learning methods in the environmental sciences: neural networks and kernels. Cambridge University Press, Cambridge
  • 14. IPCC (2014) Climate Change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]. IPCC, Geneva, Switzerland, p 151
  • 15. Ishida K, Tsujimoto G, Ercan A, Tu T, Kiyama M, Amagasaki M (2020) Hourly-scale coastal sea level modeling in a changing climate using long short-term memory neural network. Sci Total Environ 720:137613. https://doi.org/10.1016/j.scitotenv.2020.137613
  • 16. Juan C, Genxu W, Tianxu M, Xiangyang S (2017) ANN model-based simulation of the runoff variation in response to climate change on the Qinghai-Tibet Plateau, China. Adv Meteorol. https://doi.org/10.1155/2017/9451802
  • 17. Kalteh AM (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput Geosci 54:1–8. https://doi.org/10.1016/j.cageo.2012.11.015
  • 18. Karamouz M, Zahmatkesh Z, Nazif S (2013) Realization of sea level rise using climate variables considering climate change scenarios. In: World environmental and water resources congress 2013: showcasing the future, pp 1402–1409
  • 19. Khaledian MR, Isazadeh M, Biazar SM, Pham QB (2020) Simulating Caspian Sea surface water level by artificial neural network and support vector machine models. Acta Geophys 68:553–563. https://doi.org/10.1007/s11600-020-00419-y
  • 20. Koirala SR, Gentry RW (2012) SWAT and wavelet analysis for understanding the climate change impact on hydrologic response. Open J Mod Hydrol 02:41–48. https://doi.org/10.4236/ojmh.2012.22006
  • 21. Krishna B, Rao YRS, Nayak PC (2011) Time series modeling of river flow using wavelet neural networks. J Water Resour Prot 03:50–59. https://doi.org/10.4236/jwarp.2011.31006
  • 22. Lei L, Wang C, Liu X (2013) Discrete wavelet transform decomposition level determination exploiting sparseness measurement. Int J Electr Comput Energ Electron Commun Eng 7:1182–1185
  • 23. Li XZ, Kong JM (2014) Application of GA-SVM method with parameter optimization for landslide development prediction. Nat Hazards Earth Syst Sci 14:525–533. https://doi.org/10.5194/nhess-14-525-2014
  • 24. Lin J, Cheng C, Chau K (2006) Using support vector machines for long-term discharge prediction. Hydrol Sci J 51:599–612. https://doi.org/10.1623/hysj.51.4.599
  • 25. Maddah HA (2016) Modeling the relation between carbon dioxide emissions and sea level rise for the determination of future (2100) sea level. Am J Environ Eng 6:52–61. https://doi.org/10.5923/j.ajee.20160602.03
  • 26. Maheswaran R, Khosa R (2012) Comparative study of different wavelets for hydrologic forecasting. Comput Geosci 46:284–295. https://doi.org/10.1016/j.cageo.2011.12.015
  • 27. Mangai JA, Gulyani BB (2016) Induction of model trees for predicting BOD in river water: a data mining perspective. In: Perner P (ed) Advances in data mining. Applications and theoretical aspects. ICDM 2016. Lecture notes in computer science, vol 9728. Springer, Cham. https://doi.org/10.1007/978-3-319-41561-1_1
  • 28. Misiti M, Misiti Y, Oppenheim G, Poggi J-M (1996) Wavelet toolbox user’s guide. The Math Works Ins., USA
  • 29. Modaresi F, Araghinejad S (2014) A comparative assessment of support vector machines, probabilistic neural networks, and K-nearest neighbor algorithms for water quality classification. Water Resour Manag 28:4095–4111. https://doi.org/10.1007/s11269-014-0730-z
  • 30. Mohammadi K, Shamshirband S, Tong CW, Arif M, Petković D, Sudheer C (2015) A new hybrid support vector machine-wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers Manag 92:162–171. https://doi.org/10.1016/j.enconman.2014.12.050
  • 31. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. https://doi.org/10.13031/2013.23153
  • 32. Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228. https://doi.org/10.1016/j.jhydrol.2012.09.049
  • 33. Naren A, Maity R (2017) Hydroclimatic modelling of local sea level rise and its projection in future. Theor Appl Climatol 130:761–774. https://doi.org/10.1007/s00704-016-1897-4
  • 34. Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT (2018) Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc Natl Acad Sci 115:2022–2025. https://doi.org/10.1073/pnas.1717312115
  • 35. Nourani V, Hosseini A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet—artificial intelligence models in hydrology: a review. J Hydrol 514:358–377. https://doi.org/10.1016/j.jhydrol.2014.03.057
  • 36. Nury AH, Hasan K, Bin Alam MJ (2017) Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh. J King Saud Univ Sci 29:47–61. https://doi.org/10.1016/j.jksus.2015.12.002
  • 37. Pišoft P, Kalvová J, Brázdil R (2004) Cycles and trends in the Czech temperature series using wavelet transforms. Int J Climatol 24:1661–1670. https://doi.org/10.1002/joc.1095
  • 38. Pramanik N, Panda RK, Singh A (2011) Daily river flow forecasting using wavelet ANN hybrid models. J Hydroinformatics 13:49–63. https://doi.org/10.2166/hydro.2010.040
  • 39. Santos CAG, da Silva GBL (2014) Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrol Sci J 59:312–324. https://doi.org/10.1080/02626667.2013.800944
  • 40. Suzuki T, Ishii M (2011) Long—term regional sea level changes due to variations in water mass density during the period 1981–2007. Geophys Res Lett 38:L21604. https://doi.org/10.1029/2011gl049326
  • 41. Tao H, Sulaiman SO, Yaseen ZM, Asadi H, Meshram SG, Ghorbani MA (2018) What is the potential of integrating phase space reconstruction with SVM-FFA data-intelligence model? application of rainfall forecasting over regional scale. Water Resour Manag 32:3935–3959. https://doi.org/10.1007/s11269-018-2028-z
  • 42. Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. J Hydrol 330:621–640. https://doi.org/10.1016/j.jhydrol.2006.04.030
  • 43. Voyant C, Notton G, Kalogirou S, Nivet ML, Paoli C, Motte F, Fouilloy A (2017) Machine learning methods for solar radiation forecasting: a review. Renew Energy 105:569–582. https://doi.org/10.1016/j.renene.2016.12.095
  • 44. Xiao F, Zhang Y (2011) A comparative study on thresholding methods in wavelet-based image denoising. Procedia Eng 15:3998–4003. https://doi.org/10.1016/j.proeng.2011.08.749
  • 45. Yadav AK, Chandel SS (2014) Solar radiation prediction using artificial neural network techniques: a review. Renew Sustain Energy Rev 33:772–781. https://doi.org/10.1016/j.rser.2013.08.055
  • 46. Yunrong X, Liangzhong J (2009) Water quality prediction using LS-SVM with particle swarm optimization. In: 2009 second international workshop on knowledge discovery and data mining. IEEE, pp 900–904
  • 47. Zhu G, Blumberg DG (2002) Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel. Remote Sens Environ 80:233–240. https://doi.org/10.1016/s0034-4257(01)00305-4
  • 48. Zickfeld K, Solomon S, Gilford DM (2017) Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases. Proc Natl Acad Sci 114:657–662. https://doi.org/10.1073/pnas.1612066114
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34413327-3dd8-443a-887f-ceafa3097d03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.