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ABSTRACT. Nowadays, the global navigation satellite system (GNSS) positioning techniques 
based on the International GNSS Service (IGS) products are extensively used for various 
precise applications. However, specific conditions such as the dual-frequency observations and 
the final IGS products are required. Consequently, the absence of the final IGS data and using 
single-frequency observations will degrade these techniques' accuracy. In this paper, two 
algorithms through two separated stages are formulated for improving the single-frequency 
GNSS observations by using one GNSS receiver based on the broadcast ephemerides in real 
time or close to real time. The first algorithm represents the preparation stage for the second 
one. It classifies the observations by separating the optimal values of position dilution of 
precision (PDOP) and the number of satellites (NOS), as well as the corresponding values of 
coordinates. The second stage includes an algorithm based on the artificial neural network 
(ANN) approach, which is set at the ANN variables that produce the best precision through the 
applied tests at the present study. Binary numbers, log sigmoid-Purelin, cascade forward net, 
and one hidden layer with a size of 10 neurons are the optimal variables of ANN inputs format, 
transfer functions constellations, feedforward net type, and the number of hidden layers (NHL) 
and its size, respectively. The simulation results show that the designed algorithms produce a 
significant improvement in the horizontal and vertical components. Lastly, an evaluation stage 
is performed in the case of dual-frequency observations by using broadcast ephemerides. The 
simulation outputs indicate that the precision at applying the proposed integration is completely 
enhanced compared with the outputs of IGS final data. 
Keywords: GNSS, artificial neural network, satellites’ configuration, IGS, single-frequency 
observations 

1. INTRODUCTION  
Global navigation satellite system (GNSS) plays an essential role in a wide range of applications 
such as geodetic, geodynamic, surveying, and mapping (e.g., Mohamed 2015). Numerous 
sources of errors (e.g., satellite ephemerides, satellite clock, ionospheric and tropospheric, and 
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multipath errors) affect GNSS positioning accuracy. The differential GNSS (DGNSS) 
technique, which basically requires a reference station (Correa Muñoz and Cerón-Calderón 
2018), is widely used to eliminate or mitigate these errors. Besides, GNSS performance can be 
improved through various factors such as the number of satellites (NOS) (Lemmon and Gerdan 
1999, Specht et al. 2015, Davidovic and Mijic 2017) and position dilution of precision (PDOP) 
(Nie et al. 2016, Biswas et al. 2017, Janowski and Rapinski 2016, Han et al. 2014, Teng and 
Wang 2015) (i.e., satellites configuration), cut-off angle (Teunissen et al. 2013), recording 
interval (Yousef and Alemam 2014), occupation time (Mohamed 2015, McGaughey et al. 
2017), and GNSS constellations (El Manaily et al. 2017, Rabbou and El-Rabbany 2015). 
Economically, DGNSS is not favorable for most users because it requires at least two receivers 
(i.e., one receiver as a reference station and the other as a rover); consequently, high cost and a 
long time in fieldwork are consumed. Furthermore, the real time kinematic (RTK) GNSS 
positioning technique, which works like DGNSS depending on the radio communication, has a 
limited distance for communication. The poor connection due to obstacles, especially in 
downtown areas, is an additional factor. Thus, the GNSS techniques that use only one GNSS 
receiver, that is, independent during fieldwork, are the priority choice for users. 
The popular GNSS positioning techniques that use one GNSS receiver in the fieldwork are the 
precise point positioning (PPP) and the DGNSS with respect to the international GNSS service 
(IGS) stations (IGS DGNSS) (El-Tokhey et al. 2018). The IGS is the most considered 
organization for GNSS service. The IGS stations play a significant contribution in DGNSS 
positioning, which is used to get the high level of accuracy of another type of GNSS stations, 
for instance, permanent GNSS stations, campaign mode GNSS stations, climate modeling, 
meteorology, and space weather applications (Ansari et al. 2017). 
Recently, these techniques (i.e., PPP and IGS DGNSS) have provided a high position accuracy, 
taking advantage of both the IGS networks and the IGS products range (e.g., precise GNSS 
orbits and clock products) (Martín et al. 2011, Farah 2017). It should be pointed out that several 
PPP or relative positioning online services have been established for providing processed data 
for the GNSS observations (Heßelbarth and Wanninger 2010, Jamieson and Gillins 2018). 
Some of the service providers include, for example, the Geoscience Australia Online GPS 
Processing Service (AUSPOS) (http://www.ga.gov.au.), the Scripps Coordinate Update Tool 
(SCOUT), which was developed by the Scripps Orbit and Permanent Array Centre 
(SOPAC) (http://sopac.ucsd.edu.), and the Canadian Spatial Reference System (CSRS)-PPP 
(http://www.geod.nrcan.gc.ca) (Ghoddousi-Fard and Dare 2005). According to the nearest IGS 
stations, these services provide corrections for the GNSS observations using the IGS precise 
orbits. Table 1 shows the IGS satellites’ ephemerides and clock products 
(http://www.igs.org/products).  
As shown in Table 1, the final ephemerides, which are available approximately 2 weeks after 
the last observations (Martín et al. 2011), have the highest quality and internal consistency 
compared to other products. The broadcast and ultra-rapid ephemerides, which produce the 
worst accuracy, are available in real time. Consequently, obtaining high accuracy in real time 
is considered as one of the important subjects in recent studies. 
Presently, the application of the artificial neural network (ANN) as an intelligent processing 
tool is highly recommended for solving this type of issue; it has been widely developed and 
applied in different fields, including function approximation, classification, and pattern 
recognition (Zhou et al. 2017). Evaluating it as a suitable technique for solving most geodetic 
issues (e.g., enhancing the GNSS technique) has been investigated through several studies. 
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Table 1. Characteristics of IGS satellite ephemerides and clock products (2019) 

Type Accuracy Latency Updates Sample 
interval 

GPS satellite ephemerides/satellite and station clocks 

Broadcast 

Orbits ~100 cm 

Real time -- Daily 
Sat. clocks ~5 ns RMS  

~2.5 ns SD 

Ultra-rapid  
(predicted 
half) 

Orbits ~5 cm 

Real time Four times/day 15 min 
Sat. clocks ~3 ns RMS  

~1.5 ns SD 

Ultra-rapid  
(observed 
half) 

Orbits ~3 cm 

3–9 h Four times/day 15 min 
Sat. clocks ~150 ps RMS  

~50 ps SD 

Rapid 

Orbits ~2.5 cm 

17–41 h One time/day 

15 min 

Sat. and stn 
clocks 

~75 ps RMS  
~25 ps SD 5 min 

Final 

Orbits ~2.5 cm 

12–18 days One time/week 

15 min 

Sat. and stn 
clocks 

~75 ps RMS  
~20 ps SD 

Sat.: 30 s  
Stn.: 5 min 

GLONASS satellite ephemerides 

Final Orbits ~3 cm 12–18 days Every Thursday 15 min 

where: ns = nanosecond, ps = picosecond, UTC =Universal Coordinated Time, 
RMS = Root Mean Square errors, SD = standard deviation 

 
For instance, Yang et al. (2015), Gera et al. (2011), and Mosavi and Mohammadi (2002) 
improved GNSS positioning accuracy. Zhou et al. (2017), Kaygısız et al. (2007), and 
Malleswaran et al. (2014) enhanced performance and position accuracy of the global 
positioning system (GPS)/inertial navigation system (INS) integrated navigation. Ordóñez 
Galán et al. (2013) studied the influence of forestry environments on the accuracy of GPS. 
Besides, Mohammed et al. (2015), Wang et al. (2016), Kim and Kim (2015), and Barrile et al. 
(2016) applied ANN to predict GPS positioning, GPS satellite clock bias, IGS real time service 
corrections, and displacement in tectonically active areas, respectively. Furthermore, it has been 
used for geodetic coordinates’ transformation (Elshambaky et al. 2018, Ziggah et al. 2016b), a 
corrector surface determination for global geopotential model (Elshambaky 2018), planimetric 
coordinates’ transformation (Ziggah et al. 2016a), and Geometrical Dilution of Precision 
(GDOP) approximation for improving GPS accuracy (Tafazoli and Mosavi 2011, Azami et al. 
2012, Chien-Sheng and Szu-Lin 2010, Tafazoli et al. 2011, Jwo and Lai 2006, Azami and Sanei 
2013, Azarbad et al. 2014, Azami et al. 2016). The general insight gathered from these previous 
works indicate that ANN is suitable for numerous geodetic applications. 
As is well known, low-cost, single-frequency GNSS receivers provide an accuracy less than 
that provided by using high-cost, dual-frequency GNSS receivers. As a result, single-frequency 
GNSS observations have gained a wide research interest for applications that need high 
accuracy with less cost, especially in developing countries such as Egypt. Consequently, this 
investigation was carried out in Egypt, mainly to improve single-frequency GNSS observations 
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in real time by employing the ANN approach. The GNSS positioning technique selected in the 
present study is the IGS DGNSS. However, this study's outputs are applicable to both 
differential and PPP methods that utilize IGS final products. It is noteworthy, to our best 
knowledge, that ANN has not been applied in Egypt for improving GNSS positioning 
techniques’ accuracy. 
This study, basically, focuses on an algorithm formulated based on the ANN approach. The 
ANN is optimized to provide the best performance. In addition, the satellites' configuration that 
represents one of the significant effective factors on GNSS positioning accuracy was taken into 
account by improving the input data to ANN. Simultaneously, an algorithm was designed for 
selecting the best values of the input data according to the optimal satellites' configuration (NOS 
and PDOP). Generally, the ANN in this study focuses on the dynamics of numbers as well as 
using the binary format, which represents an essential role for achieving the required accuracy, 
instead of decimal numbers for input data. Finally, the output data is filtered, and the final 
outputs are then calculated using the least square method (LSM). 
The main objectives of this study are to (i) test the affected parameters in the ANN and 
determine the best values that produce an acceptable precision, (ii) improve single-frequency 
GNSS observations in real time applications, and (iii) test the final simulation in the case of 
dual-frequency GNSS observations by comparing its outputs using broadcast ephemerides with 
the data processed using the final IGS orbits. 

2. ARTIFICIAL NEURAL NETWORK 
ANN is a technology inspired by biological neurons' structure to model the human brain's 
behavior while performing a particular function. Generally, it consists of a series of layers, 
namely, the input layer, hidden layer, and the output layer (Fig. 1). 

As shown in Fig. 1, the input layer includes input 𝑷𝑷, which has a single vector of 𝑹𝑹 elements 
that are connected with the hidden layer by synaptic weights, 𝑾𝑾𝑵𝑵𝒉𝒉,𝐑𝐑

𝒉𝒉 . The synaptic weights 
𝑾𝑾𝑵𝑵𝒐𝒐,𝑵𝑵𝒉𝒉 

𝒐𝒐  make connections between the hidden and output layers. The superscripts 𝒉𝒉 and 𝒐𝒐 
indicate the hidden and output layer, respectively. The first index indicates the specific neuron 
destination for that weight; the second index denotes the source of the signal fed to the neuron; 
while 𝑵𝑵𝒉𝒉,𝑵𝑵𝒐𝒐 represent the number of neurons (NON) in the hidden and output layers, 
respectively. These neurons represent the processing units in ANN, where each neuron has a 
bias 𝒃𝒃, summation 𝑺𝑺, activation function 𝒇𝒇, and output 𝒂𝒂. The hidden layer's output 𝒂𝒂𝒉𝒉 is the 
input for the output layer, which produces an output 𝒂𝒂𝒐𝒐. The bias 𝒃𝒃 is like a weight, but it has 
a constant input of 1. The summation 𝑺𝑺 can be calculated in the hidden and output layers using 
Equations (1) and (2): 

 𝑆𝑆𝑗𝑗ℎ = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗
ℎ𝑃𝑃𝑗𝑗  + 𝑏𝑏𝑗𝑗

ℎ𝑅𝑅
𝑗𝑗=1  (1) 

 𝑆𝑆𝑘𝑘𝑜𝑜 = ∑ 𝑊𝑊𝑘𝑘𝑗𝑗
𝑜𝑜 𝑎𝑎𝑗𝑗ℎ  + 𝑏𝑏𝑘𝑘

𝑜𝑜𝑁𝑁ℎ
𝑗𝑗=1  (2) 

where 𝑺𝑺𝒋𝒋𝒉𝒉 and 𝑺𝑺𝒌𝒌𝒐𝒐 represent the weighted inputs summed with the bias at hidden neuron 𝒋𝒋 and 
output neuron 𝒌𝒌, respectively. 
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Figure 1. ANN architecture 

This summation is fed to the activation function (i.e., transfer function), which squashes its 
inputs to specific values depending on the activation function type. There are three activation 
functions that are most commonly used (Azami and Sanei 2013, Kim and Kim 2015). The first 
function (Equation 3) is a linear transfer function (Purelin), which produces an output equal to 
its input, where 

 𝑓𝑓(𝑆𝑆) = 𝑆𝑆 (3) 
The second function (Equation 4) is the log sigmoid (Logsig); this transfer function takes the 
input which lies between plus and minus infinity and squashes the output into the range 0–1, 
using the expression 

 𝑓𝑓(𝑆𝑆) = 1
1+𝑒𝑒−𝑆𝑆

 (4) 

Equation (5) presents the third function, which is the hyperbolic tangent sigmoid (Tansig); this 
function is like the log sigmoid function, but the output here is squashed into the range −1 to 1 
using the expression 

 𝑓𝑓(𝑆𝑆) = 𝑒𝑒𝑆𝑆−𝑒𝑒−𝑆𝑆

𝑒𝑒𝑆𝑆+𝑒𝑒−𝑆𝑆
 (5) 

However, it is important to mention that ANN may have one or more hidden layers (i.e., 
multilayer network). These hidden layers may have different transfer functions and different 
NON. There are various types of ANN. The multilayer feedforward network that applied the 
backpropagation (BP) algorithm for training the network is one of the most commonly used in 
ANN applications.  

2.1. BP algorithm  
The mean square error (MSE) represents the network performance index in the BP algorithm, 
which can be obtained by comparing each network's output with its corresponding target. In 
doing so, the approximate steepest descent rule is used for updating the weights and biases to 
minimize the MSE. Network training by the BP algorithm is accomplished through two 
different passes of computations, namely, forward pass and backward pass. 



23 
 

2.1.1. Forward pass computations 
Based on the notations in Fig. 1, the computations in the forward pass can be expressed as 
indicated in Equations (6) and (7), where Equations (1) and (2) of the summations at neuron j 
and k are modified to 

 𝑆𝑆𝑗𝑗ℎ(𝑛𝑛) = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗
ℎ(𝑛𝑛)𝑃𝑃𝑗𝑗(𝑛𝑛)�̇�𝑅

𝑗𝑗=0  (6) 

 𝑆𝑆𝑘𝑘𝑜𝑜(𝑛𝑛) = ∑ 𝑊𝑊𝑘𝑘𝑗𝑗
𝑜𝑜 (𝑛𝑛)𝑎𝑎𝑗𝑗

ℎ(𝑛𝑛)�̇�𝑁ℎ
𝑗𝑗=0  (7) 

for simplifying the mathematical operations, where �̇�𝑹 and �̇�𝑵𝒉𝒉 are the inputs (including the 
constant 1) for hidden and output layers, respectively. The synaptic weights 𝑾𝑾𝒋𝒋𝟎𝟎

𝒉𝒉  and 𝑾𝑾𝒌𝒌𝟎𝟎
𝒐𝒐  are 

𝒃𝒃𝒋𝒋
𝒉𝒉 and 𝒃𝒃𝒌𝒌

𝒐𝒐 at neuron j and k, respectively, and n denotes the iteration number. This iteration 
(epoch) indicates the recurrence number of updating weights until the acceptable error is 
achieved. 

𝒂𝒂𝒋𝒋𝒉𝒉, which represents the output of neuron j in the hidden layer, can be calculated by applying 
the associated activation function 𝑓𝑓 as follows: 

 𝑎𝑎𝑗𝑗ℎ(𝑛𝑛) = 𝑓𝑓𝑗𝑗�𝑆𝑆𝑗𝑗ℎ(𝑛𝑛)� (8) 

This activation function is selected based on the problem needed to be solved. Likewise, 𝒂𝒂𝒌𝒌𝒐𝒐, 
which denotes the output of neuron k in the output layer and represents the network's output, 
can be calculated by the equation 

 𝑎𝑎𝑘𝑘𝑜𝑜(𝑛𝑛) = 𝑓𝑓𝑘𝑘(𝑆𝑆𝑘𝑘𝑜𝑜(𝑛𝑛)) (9) 

Let  𝒚𝒚𝒌𝒌 = 𝒂𝒂𝒌𝒌𝒐𝒐; correspondingly, the error signal produced at the output of neuron k is defined 
by the equation 

 𝑒𝑒𝑘𝑘(𝑛𝑛) = 𝑑𝑑𝑘𝑘(𝑛𝑛) −  𝑦𝑦𝑘𝑘(𝑛𝑛) (10) 

where 𝒅𝒅𝒌𝒌 is the ith desired (i.e., target) output for the ith element of the vector input R. 
Now, the computations will be carried out in the opposite direction to update the weights for 
minimizing the produced error. 

2.1.2. Backward pass computations 
The steepest descent algorithm (i.e., delta rule) for the approximate MSE is expressed in 
Equation (11) as 

 ∆𝑤𝑤𝑘𝑘𝑗𝑗(𝑛𝑛) =  −𝜂𝜂 𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘(𝑛𝑛) (11) 

where ∆𝒘𝒘𝒌𝒌𝒋𝒋 is the applied correction to the synaptic weight 𝒘𝒘𝒌𝒌𝒋𝒋. Moreover, 𝜼𝜼 denotes the 
learning rate. 
E represents the error energy of neuron k, that is, MSE, which can be written as 

 𝐸𝐸𝑘𝑘(𝑛𝑛) = 1
2

 𝑒𝑒𝑘𝑘2 (𝑛𝑛) (12) 

according to the least mean square (LMS) algorithm. 
Apparently, the error is an indirect function of the weights. Therefore, the chain rule of the 
calculus was proposed to calculate the derivatives. 

Let 𝑺𝑺𝒌𝒌𝒐𝒐= 𝝊𝝊𝒌𝒌; the partial derivative 𝝏𝝏𝝏𝝏(𝒏𝒏)/(𝝏𝝏𝒘𝒘𝒌𝒌𝒋𝒋 (𝒏𝒏), according to the chain rule, can be written 
as 
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 𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘(𝑛𝑛) =  𝜕𝜕𝜕𝜕(𝑛𝑛)

𝜕𝜕𝑒𝑒𝑘𝑘(𝑛𝑛)  𝜕𝜕𝑒𝑒𝑘𝑘(𝑛𝑛)
𝜕𝜕𝑦𝑦𝑘𝑘(𝑛𝑛)

𝜕𝜕𝑦𝑦𝑘𝑘(𝑛𝑛)
𝜕𝜕𝜐𝜐𝑘𝑘(𝑛𝑛)

𝜕𝜕𝜐𝜐𝑘𝑘(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘(𝑛𝑛)  (13) 

Consequently, differentiating Equations (7), (9), (10), and (12) with respect 
to 𝒘𝒘𝒌𝒌𝒋𝒋,𝝊𝝊𝒌𝒌,𝒚𝒚𝒌𝒌 and 𝒆𝒆𝒌𝒌, respectively, yields 

 𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘(𝑛𝑛) =  −𝑒𝑒𝑘𝑘(𝑛𝑛) �́�𝑓𝑘𝑘�𝜐𝜐𝑘𝑘(𝑛𝑛)�𝑎𝑎𝑗𝑗ℎ(𝑛𝑛) (14) 

The use of Equation (14) in Equation (11) gives 

 ∆𝑤𝑤𝑘𝑘𝑗𝑗(𝑛𝑛) =  𝜂𝜂 𝛿𝛿𝑘𝑘(𝑛𝑛) 𝑦𝑦𝑗𝑗(𝑛𝑛) (15) 

 where 𝜹𝜹𝒌𝒌 (local gradient) = 𝑒𝑒𝑘𝑘(𝑛𝑛) �́�𝑓𝑘𝑘�𝜐𝜐𝑘𝑘(𝑛𝑛)� (16) 

 and 𝒚𝒚𝒋𝒋(𝒏𝒏) = 𝒂𝒂𝒋𝒋𝒉𝒉(𝒏𝒏). 

Equation (15) has been modified by adding a momentum term as shown by the equation 

 ∆𝑤𝑤𝑘𝑘𝑗𝑗(𝑛𝑛) = 𝛼𝛼 ∆𝑤𝑤𝑘𝑘𝑗𝑗(𝑛𝑛 − 1) + ( 𝜂𝜂 𝛿𝛿𝑘𝑘(𝑛𝑛) 𝑦𝑦𝑗𝑗(𝑛𝑛) (17) 

in order to control the rate of learning, where 𝜶𝜶 is the momentum constant. 
Thus, the updated weight in the output layer can be calculated using the expression 

 𝑤𝑤𝑘𝑘𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑘𝑘𝑗𝑗(𝑛𝑛) + 𝛼𝛼 [∆𝑤𝑤𝑘𝑘𝑗𝑗(𝑛𝑛 − 1)] + ( 𝜂𝜂 𝛿𝛿𝑘𝑘(𝑛𝑛) 𝑦𝑦𝑗𝑗(𝑛𝑛) (18) 

Since the hidden layer shares the responsibility for any error made at the output layer, Equation 
(18) in the hidden layer becomes 

 𝑤𝑤𝑗𝑗𝑗𝑗(𝑛𝑛 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑛𝑛) + 𝛼𝛼 [∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑛𝑛 − 1)] + ( 𝜂𝜂 𝛿𝛿𝑗𝑗(𝑛𝑛) 𝑦𝑦𝑗𝑗(𝑛𝑛) (19) 

where 

 𝛿𝛿𝑗𝑗 =  �́�𝑓𝑗𝑗 �𝜐𝜐𝑗𝑗(𝑛𝑛)�  ∑ 𝛿𝛿𝑘𝑘 (𝑛𝑛)𝑘𝑘 𝑤𝑤𝑘𝑘𝑗𝑗(𝑛𝑛) (20) 

For more details, refer to Haykin (2009) and Beale et al. (1996). 
Accordingly, the BP algorithm was applied in this study by selecting a network training 
function called Train Levenberg–Marquardt (LM). This function updates the values of weights 
and biases according to Levenberg–Marquardt optimization, which is often the fastest BP 
algorithm. 

3. MATERIALS AND METHODS  

3.1. Study area and data sources  
The study area consists of five geodetic stations in Egypt established by the Egyptian surveying 
authority. These stations are distributed in five cities: Baltim, Suez, Helwan, Cairo, and Assiut. 
Egypt is a country situated in the northeast corner of Africa, sharing borders with Libya to the 
west, Sudan to the south, the Mediterranean Sea to the north, and the red sea to the east. It lies 
between the latitudes 22° and 32° North and the longitudes 24° and 37° East (Bear et al. 1999). 
The observations were recorded with different GNSS instruments (dual frequency) at different 
dates. Likewise, two IGS stations, DRAG and RAMO, which are nearest to the study area, have 
been chosen for applying the IGS DGNSS technique. CSRS-PPP and SOPAC online services 
were used to obtain the reference coordinates of the test points and IGS points, respectively. 
Fig. 2 shows the study area and the location of the test stations as well as the utilized IGS 
stations. Furthermore, GNSS instruments used for recording the observations, reference 
coordinates, and data sources are illustrated in Table 2. 
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Figure 1. Study area and IGS stations 

Table 2. Data sources 

Station 
Station 

type 
GNSS instrument 

Reference coordinates 

Longitude 
 ° ′ ″ 

Latitude 
 ° ′ ″ 

Ellipsoidal 
height, m 

Source 

DRAG IGS  Leica GRX1200  35 23 31.46180  31 35 35.5288 31.834 SOPAC 

RAMO IGS  Leica RS500  34 45 47.31050  30 35 51.38602 886.829 SOPAC 

Baltim Test  Trimble R8  31 04 49.15000  31 35 45.42070 31.163 CSRS 

Suez Test  Trimble R8  32 36 22.45620  30 07 09.53080 53.827 CSRS 

Helwan Test  Trimble R8  31 20 37.30370  29 51 33.72150 135.055 CSRS 

Cairo Test  Leica GR10  31 14 16.45330  30 02 43.33490 68.268 CSRS 

Assiut Test  Ashtech Z-Xtreme  31 10 19.90010  27 11 12.12040 91.420 CSRS 

3.2. Methodology 
For achieving the desired accuracy of coordinates as a final output from GNSS observations as 
a first input, three main stages were considered using powerful packages of data processing and 
analyzing that are gained in MATLAB software R2018a and Excel program 2016 after using 
GNSS software (the Trimble Business Centre [TBC] and Ashtech solution) to post-process the 
observations.  
The mentioned stages are illustrated in Fig. 3 and discussed in the following subsections. 
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3.2.1. GNSS software stage 
Conventionally, GNSS software requires observations of a control point and an unknown point 
to run a proper processing operation. At this stage, processing operation through the normal 
way was implemented. In addition to that, the observations of a known point were processed in 
parallel by the same control point. These points were recorded at the same time. Thus, the IGS 
station DRAG was fed to TBC software as a control point and the IGS station RAMO was fed 
as Rover1, while a test point was fed as Rover2. Subsequently, TBC processing was performed 
separately for each test point at 30 s sampling time and 2 h of occupation time by applying the 
following scenarios: 

− broadcast ephemerides with single-frequency observations, 
− broadcast ephemerides with dual-frequency observations, and 
− precise ephemerides with dual-frequency observations. 

The TBC cannot extract the coordinates at each sampling time, PDOP, and NOS. Therefore, 
the Ashtech solution is employed for this operation. The GNSS software outputs were converted 
from geodetic coordinates (latitude, longitude, and ellipsoidal height) to geocentric coordinates, 
that is, Earth Centre Earth Fixed (X, Y, and Z), using MATLAB functions because the geodetic 
coordinates are not suitable for the computations stage. Finally, the X, Y, Z, PDOP, and NOS 
at each sampling time of Rover1 and Rover2 were extracted and fed to the classification stage. 

3.2.2. Classification stage 
An algorithm was formulated for this stage (Fig. 4); it includes two main parts. In the first part, 
the minimum and maximum values of NOS and PDOP were calculated to determine the 
available NOS and PDOP. This classification was conducted through different satellite 
configurations with NOS representing values (NOSmin, …, NOSmax) and PDOP as periods 
(PDOP1 = PDOP < 3, PDOP2 = 3 ≤ PDOP < 5, and PDOP3 = PDOP ≥ 5). For example, the 
coordinate error and the 3D position error at NOSmin and PDOP1 were calculated in terms of 
standard deviation (SD) as described in Equations (21)–(24) (Inal et al. 2018)  

 𝜎𝜎𝑋𝑋 = �∑(𝑋𝑋𝑡𝑡−𝑋𝑋𝑖𝑖)2

𝑛𝑛
 (21) 

 𝜎𝜎𝑌𝑌 = �∑(𝑌𝑌𝑡𝑡−𝑌𝑌𝑖𝑖)2

𝑛𝑛
 (22) 

 𝜎𝜎𝑍𝑍 = �∑(𝑍𝑍𝑡𝑡−𝑍𝑍𝑖𝑖)2

𝑛𝑛
 (23) 

 𝜎𝜎𝑃𝑃 = �(𝜎𝜎𝑋𝑋)2 + (𝜎𝜎𝑌𝑌)2 + (𝜎𝜎𝑍𝑍)2   (24) 

where 

 𝜎𝜎𝑋𝑋 ,𝜎𝜎𝑌𝑌, and 𝜎𝜎𝑍𝑍 are the SDs of X, Y, and Z, respectively; 
 𝜎𝜎𝑃𝑃 is the 3D position error; 
 𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡, and 𝑍𝑍𝑡𝑡 are the true values of X, Y, and Z, respectively; 
 𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗,𝑍𝑍𝑗𝑗 are the ith values of X, Y, and Z, respectively; and 
 𝑛𝑛 is the number of observations. 

Consequently, the optimum values of NOS, PDOP, sampling times (which produced the best 
precision), and the corresponding values of X, Y, and Z were obtained. In the second part, the 
best coordinates values for Rover2 were selected based on the optimal values of NOS, PDOP, 
and sampling time at rover1. 
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As a result, the data obtained for Rover1 (known station) and Rover2 (unknown station) were 
entirely similar in the following parameters: 

− control point, 
− NOS, 
− PDOP, 
− sampling time, 
− occupation time, and 
− the time of collecting data in the day. 

It is noteworthy that these parameters are the most influential factors for GNSS accuracy.  

3.2.3. ANN stage 

Here, the classification outputs were fed to an algorithm (Fig. 5) designed based on the ANN 
approach. The ANN layers were optimized by selecting the best parameters at each layer for 
obtaining the best accuracy. Table 3 shows the tested parameters and their values, which were 
used for each test. Furthermore, as mentioned above, Train LM was selected as the training 
function in all tests. The training parameters that occur according to the Train LM function and 
learning rate are shown in Table 4. The algorithm was then run for each test, and the simulation 
prediction errors of X, Y, and Z were calculated in terms of the SDs. 

3.2.3.1. Input layer 
Since the inputs' accuracy has a serious effect on the final outputs, an independent stage (i.e., 
the classification stage) was employed to improve it. Eventually, the input layer was optimized.  

Table 3. The tested parameters in the ANN algorithm 

Test 
no.  Transfer 

function ANN type NHL NON NOI 

1 Transfer 
function X Fit net 1 10 100 

2 ANN type The optimal 
at test 1 X 1 10 100 

3 NHL The optimal 
at test 1 

The optimal 
at test 2 X 10 100 

4 NON The optimal 
at test 1 

The optimal 
at test 2 

The optimal 
at test 3 X 100 

5 NOI The optimal 
at test 1 

The optimal 
at test 2 

The optimal 
at test 3 

The optimal 
at test 4 X 

X: The selected values for testing 

Table 4. The parameters involved in the ANN algorithm 

Epoch Goal Max_fail Min_fail Mu Learning rate 

1000 0 6 1e-7 0.001 0.01 
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Figure 3. Methodology flowchart 
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Figure 4. Algorithm steps of the classification stage 

Xi, Yi, Zi: coordinates values at each NOS, PDOP and ST 
n: Number of the processed observations 
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Figure 5. Algorithm steps of the ANN stage (binary numbers) 

Pr1: X or Y or Z coordinates for rover1  

Pr2: X or Y or Z coordinates for rover2 

PR: known coordinates for rover1 

NOI: number of initializations (running 
times) 

Ri: corrected values for rover2 

de2bi: decimal to binary 
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3.2.3.2. Hidden layer  
The parameters in the hidden layer have been optimized through five tests. Test 1 includes 
studying the effect of transfer function on accuracy. Different constellations among transfer 
functions (Tansig, Logsig, and Purelin), which are usually used in ANN at hidden and output 
layers, were studied. These constellations were based on pairing each function with itself in the 
first attempt and with the other functions subsequently; for instance, Purelin at the hidden layer 
and Purelin at the output layer for the first constellation; the next constellation was Purelin at 
the hidden layer and Logsig at the output layer, in that order.  
Notably, when a trial was performed for the test, only the simulation outputs of Purelin–Purelin 
constellation produced an acceptable coordinate value. Conversely, constellations that have 
Logsig or Tansig produced inconsistent values. It is well known that the outputs of sigmoid 
functions are squashed into the range (0–1) and (-1 to 1) with Logsig and Tansig, respectively 
(Haykin 2009). Consequently, it was proposed to convert the input coordinates into (1,0), that 
is, binary format, and test it with the coordinates in decimal numbers. 
The decimal numbers were converted to binary ones through the proposed algorithm of this 
stage and then were reversed at the output layer for performing the necessary calculations and 
analysis. It is important to note that binary numbers occupy many cells in the worksheet, but 
the decimals need one cell for each coordinate. Therefore, to guarantee more clearance and 
accurate outputs, each coordinate was fed separately in the case of binary format. 
Fit net, pattern net, and cascade forward net are the specialized versions of feedforward 
networks, which can be used for any kind of input to output mapping (Zhou et al. 2017, Kaygısız 
et al. 2007, Zhang 2000). Hence, these networks were selected for studying the ANN types in 
test 2. Test 3 studies the effect of changing the number of hidden layers (NHL) on output 
accuracy. A range from 1 to 10 was selected for testing. Additionally, the NON, which 
represents the hidden layer's size, was investigated in test 4. The values 1, 2, 3, 4, 5, 10, 15, 20, 
30, 40, and 50 were selected for testing. 
Because of the random set of the initial weights and biases, the outputs may be changed at each 
initialization. Thus, the effects of the number of initializations (NOI), that is, the algorithm's 
running times, on the output accuracy were studied in test 5. A range from 1 to 10,000 was 
divided into four groups (with intervals of 1, 10, 100, and 1000) and proposed for testing. One 
of the advantages of the designed algorithm is its ability to reinitialize the weights and biases 
at a specific value or period (group) within the NOI, in addition to calculating the mean value. 
Fig. 6 shows how the algorithm behaves while calculating the outputs of the NOI as a group. 

3.2.3.3. Output layer 
The output data have been filtered by applying an outlier function which removes the outlier 
elements based on the 3σ rule. After obtaining the filtered data, the LSM was applied to estimate 
the data sets' optimal value. It can minimize the weighted residuals (𝒗𝒗) by applying the normal 
equation  

 𝐿𝐿 + 𝑣𝑣 = 𝐴𝐴𝑋𝑋 (25) 

and the solution model 

 𝑋𝑋 =  (𝐴𝐴𝑇𝑇 𝑃𝑃 𝐴𝐴)−1𝐴𝐴𝑇𝑇 𝑃𝑃 𝐿𝐿 (26) 
on the output data, where L is the output matrix, A is the design matrix, X is the unknown matrix, 
and P is the weights matrix (El-naggar 2011, Olyazadeh et al. 2011). The weights matrix can 
be calculated through the SD (𝝈𝝈) and the number of outputs that passed from the filtering step. 
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These outputs are directly proportional to the weights (p), which are inversely proportional to 
the variance (𝝈𝝈𝟐𝟐) (Chandra 2005). 

 

 

 

 

 

 

 

 

 

 

Figure 6. A scheme displays the algorithm steps for producing reinitializing operation outputs  
(e.g., group 1) 

3.2.4. Application stage 
After optimizing the parameters in the ANN layers, the simulation is ready to produce improved 
accuracy. The classification outputs were fed to the final simulation for evaluating this work, 
and the differences between the predicted and fixed coordinates were determined. Moreover, 
the two stages (the classification and optimized ANN) were applied to dual-frequency 
processed data. Then, the differences between the coordinates of Rover2 and its known data 
were calculated. These differences were compared with the calculated ones between the known 
station and the output coordinates by applying IGS final orbits. 

4. RESULTS AND DISCUSSION 
The known coordinates for all the tested stations are supposed to be free of errors. Therefore, 
the comparisons carried out herein are based on the precision, not the accuracy, concept. 
Results of test 1 for the five test stations are illustrated in Table 5a–e. The table shows the ANN 
performance in terms of MSE and also provide the SDs for X, Y, and Z coordinates that 
represent the prediction errors of ANN simulation. The number of times at which the ANN 
failed in each prediction is labeled number of fails (NOF). As shown in Table 5a–e, in the case 
of decimal numbers, the constellation Purelin–Purelin was the only one which provided an 
acceptable output, whereas the other constellations provided not a number (NAN), which means 
the network produced no outputs. On the other hand, there were many constellations for binary 
numbers providing reasonable outputs, where their best values in all test stations are highlighted 
by bold font. Accordingly, it can be noted that the constellation Tansig–Tansig produced better 
precision in 𝝈𝝈𝒛𝒛,𝑴𝑴𝑺𝑺𝝏𝝏𝒁𝒁,𝑴𝑴𝑺𝑺𝝏𝝏𝑿𝑿, and 𝑴𝑴𝑺𝑺𝝏𝝏𝑿𝑿 at Baltim, Helwan, Cairo, and Assiut stations, 
respectively, than the other constellations. As well, the best value of 𝝈𝝈𝒙𝒙 at Helwan station was 
attained by Tansig–Purelin constellation. In a general insight through the table of test 1, it can 
be observed that the applied binary numbers in the constellation Logsig–Purelin achieved the 

j1 

j2 i1 

j3 i1 h1 

j4 i3 h2 g1 

j5 i4 h3 g2 f1 

j6 i5 h4 g3 f2 e1 

j7 i6 h5 g4 f3 e2 d1 

j8 i7 h6 g5 f4 e3 d2 c1 

j9 i8 h7 g6 f5 e4 d3 c2 b1 

j10 i9 h8 g7 f6 e5 d4 c3 b2 a1 

Output of each 
 

Average of each column 

Final output of the group 

f    j i e d c b  a h g 

Output  
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best precision at all stations. Consequently, it was selected as the optimum constellation. This 
confirms the findings in previous investigations conducted by Zhou et al. (2017), Ordóñez 
Galán et al. (2013), Memarian Sorkhabi (2015), and Li (2008), where this constellation was 
applied as the best choice in their studies. 
Table 6 shows the results of test 2 based on the SDs, 3D position error, and the elapsed time 
Central Processing Unit (CPU) time. The results show that the best precision in all five stations 
was obtained by applying the cascade forward net. Moreover, it took less time to execute the 
algorithm than for fit net and pattern net. This superiority could be interpreted as the strength 
in the connections among layers because it has additional connections from the input to every 
layer and from each layer to all following layers. This means there are more initialized and 
updated weights through the iteration number, thereby meeting the requirements in fewer 
epochs. Also, more equations in the BP algorithm for minimizing the errors mean the precision 
will be improved. 
The results of test 3 are shown in Fig. 7, which represents the relation between the 3D position 
error and NHL at all test stations. This relation demonstrates no consistent behavior for the 
position error, that is, it is independent of NHL. Therefore, it could be stated that changing the 
NHL has no effect on the precision, and the value of NHL = 1 is suitable as an optimum value 
for getting an acceptable precision. Moreover, many studies have mentioned that two-layer 
neural networks with one hidden layer can theoretically achieve any nonlinear mapping (Wang 
et al. 2016, Chien-Sheng and Szu-Lin 2010, Ziggah et al. 2016b). 
Fig. 8 shows the results of test 4; it indicates that the 3D position error decreases with increasing 
NON (hidden layer size). Nevertheless, the consistent decrease in error got fluctuated at some 
point in time, as the NON increased. This was realized after 20 neurons were considered for 
Assiut, 15 neurons for Cairo, and 10 neurons for the rest of the stations. Hence, to obtain the 
best precision without involving these disturbance areas, 10 neurons were chosen as the 
optimum value. This has been confirmed by Azami et al. (2012) and Azami and Sanei (2013), 
who showed that the ANN might produce unacceptable results for complex data if the NON is 
too low. Also, too many neurons increase the training time and may reduce the ANN 
performance. 

 
Figure 7. The prediction error represented by the 3D position error versus the number of hidden layers 
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Table 5 a-e. The effect of different transfer functions’ constellation on ANN performance in the case 
of binary and decimal numbers (part 1/3) 

a)
  B

al
tim

 st
at

io
n 

Transfer functions 
 (hidden–output) 

layer 

Binary numbers 

X Y Z 
σx 

(m) 
MSE 
(m) NOF σY 

(m) 
MSE 
(m) NOF σZ 

(m) 
MSE 
(m) NOF 

Tansig–Purelin 0.112 0.008 1 0.404 0.020 6 0.254 0.025 4 

Tansig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Tansig–Tansig 0.103 0.005 2 0.319 0.007 7 0.050 0.003 5 

Logsig–Purelin 0.051 0.002 0 0.189 0.005 2 0.057 0.002 3 

Logsig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Logsig–Tansig 0.171 0.038 3 0.495 0.085 13 0.282 0.040 19 

Purelin–Purelin 1.048 0.094 7 0.955 0.087 2 0.489 0.054 6 

Purelin–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Purelin–Tansig 0.537 0.041 7 0.805 0.049 6 0.669 0.085 7 

Transfer functions 
 (hidden–output) 

layer 

Decimal numbers 

X, Y and Z 
σx 

(m) 
σy 

(m) 
σz 

(m) 
MSE 

(m) NOF 

Purelin–Purelin 0.113 0.274 0.158 2 × 10-6 0 
The other 

constellations of 
transfer functions 

NaN NaN NaN NaN 100 

b)
   

Su
ez

 st
at

io
n 

Transfer functions 
 (hidden–output) 

layer 

Binary numbers 

X Y Z 
σx 

(m) 
MSE 
(m) NOF σY 

(m) 
MSE 
(m) NOF σZ 

(m) 
MSE 
(m) NOF 

Tansig–Purelin 0.165 0.004 3 0.227 0.013 3 0.186 0.007 2 

Tansig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Tansig–Tansig 0.183 0.005 3 0.185 0.009 5 0.196 0.017 7 

Logsig–Purelin 0.095 0.002 1 0.133 0.005 0 0.117 0.001 1 

Logsig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Logsig–Tansig 0.245 0.021 7 0.401 0.005 6 0.293 0.004 6 

Purelin–Purelin 0.498 0.081 6 0.554 0.071 3 0.617 0.032 3 

Purelin–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Purelin–Tansig 0.632 0.035 6 0.488 0.045 4 0.650 0.035 10 

Transfer functions 
 (hidden–output) 

layer 

Decimal numbers 

X, Y and Z 
σx 

(m) 
σy 

(m) 
σz 

(m) 
MSE 

(m) NOF 

Purelin–Purelin 0.171 0.206 0.256 3 × 10-8 1 
The other 

constellations of 
transfer functions 

NaN NaN NaN NaN 100 
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Table 5 a-e. The effect of different transfer functions’ constellation on ANN performance in the case 
of binary and decimal numbers (part 2/3) 

c)
   

H
el

w
an

 st
at

io
n 

Transfer functions 
 (hidden–output) 

layer 

Binary numbers 

X Y Z 
σx 

(m) 
MSE 
(m) NOF σY 

(m) 
MSE 
(m) NOF σZ 

(m) 
MSE 
(m) NOF 

Tansig–Purelin 0.042 0.007 3 0.156 0.008 3 0.123 0.009 3 

Tansig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Tansig–Tansig 0.065 0.005 5 0.192 0.012 5 0.099 0.004 5 

Logsig–Purelin 0.048 0.004 2 0.129 0.002 3 0.086 0.010 2 

Logsig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Logsig–Tansig 0.275 0.013 2 0.352 0.007 6 0.356 0.032 6 

Purelin–Purelin 0.520 0.027 4 0.581 0.035 4 0.492 0.009 7 

Purelin–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Purelin–Tansig 0.452 0.008 5 0.611 0.041 5 0.470 0.036 5 

Transfer functions 
 (hidden–output) 

layer 

Decimal numbers 

X, Y and Z 
σx 

(m) 
σy 

(m) 
σz 

(m) 
MSE 

(m) NOF 

Purelin–Purelin 0.157 0.305 0.276 5 × 10-7 2 
The other 

constellations of 
transfer functions 

NaN NaN NaN NaN 100 

d)
   

C
ai

ro
 st

at
io

n 

Transfer functions 
 (hidden–output) 

layer 

Binary numbers 

X Y Z 
σx 

(m) 
MSE 
(m) NOF σY 

(m) 
MSE 
(m) NOF σZ 

(m) 
MSE 
(m) NOF 

Tansig–Purelin 0.143 0.007 4 0.031 0.010 3 0.133 0.008 2 

Tansig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Tansig–Tansig 0.127 0.001 3 0.108 0.008 4 0.186 0.015 3 

Logsig–Purelin 0.073 0.004 2 0.014 0.006 2 0.052 0.003 2 

Logsig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Logsig–Tansig 0.272 0.009 5 0.358 0.031 5 0.296 0.002 5 

Purelin–Purelin 0.382 0.012 4 0.399 0.023 3 0.488 0.047 7 

Purelin–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Purelin–Tansig 0.484 0.023 6 0.511 0.045 5 0.388 0.071 4 

Transfer functions 
 (hidden–output) 

layer 

Decimal numbers 

X, Y and Z 
σx 

(m) 
σy 

(m) 
σz 

(m) 
MSE 

(m) NOF 

Purelin–Purelin 0.273 0.242 0.338 0.006 0 
The other 

constellations of 
transfer functions 

NaN NaN NaN NaN 100 
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Table 5 a-e. The effect of different transfer functions’ constellation on ANN performance in the case 
of binary and decimal numbers (part 3/3) 

 
Figure 8. The prediction error represented by the 3D position error versus number of neurons 

Results of the NOI test (test 5) are shown in Fig. 9 and Table 7. Each group's output was 
represented by the Root Mean Square Error (RMSE) of X, Y, and Z and the 3D position error 
with the group values. Not only the group values were compared, but also the groups. From 
each group's results, as shown in Fig. 9, it can be noticed that there is a slight improvement in 
precision with increasing NOI. However, this improvement became clearer when that 

e)
   

 A
ss

iu
t s

ta
tio

n 

Transfer functions 
 (hidden–output) 

layer 

Binary numbers 

X Y Z 
σx 

(m) 
MSE 
(m) NOF σY 

(m) 
MSE 
(m) NOF σZ 

(m) 
MSE 
(m) NOF 

Tansig–Purelin 0.219 0.008 3 0.327 0.010 1 0.530 0.016 6 

Tansig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Tansig–Tansig 0.177 0.004 4 0.294 0.013 2 0.549 0.017 5 

Logsig–Purelin 0.149 0.006 2 0.225 0.007 0 0.481 0.015 5 

Logsig–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Logsig–Tansig 0.314 0.009 5 0.470 0.023 4 0.640 0.022 7 

Purelin–Purelin 0.433 0.014 4 0.402 0.036 2 0.691 0.035 14 

Purelin–Logsig NaN NaN 100 NaN NaN 100 NaN NaN 100 

Purelin–Tansig 0.503 0.071 4 0.630 0.610 0 0.747 0.051 15 

Transfer functions 
 (hidden–output) 

layer 

Decimal numbers 

X, Y and Z 
σx 

(m) 
σy 

(m) 
σz 

(m) 
MSE 

(m) NOF 

Purelin–Purelin 0.259 0.301 0.606 0.003 7 
The other 

constellations of 
transfer functions 

NaN NaN NaN NaN 100 
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comparison was performed within the groups (i.e., in the vertical direction through Fig. 9). This 
can be confirmed by the results of Table 7, which represents the average values of SDs and the 
3D position error for each group at each test station. These results reveal that the parameter 
NOI is more effective on the precision if it is supplied to ANN as a group rather than as a value. 
It is noteworthy that Table 7 illustrates the execution time for each group, which is associated 
with specific precision. It means that selecting a particular group's precision for performing any 
work depends on the required time for that work. As a general insight for all tests, it can be 
observed that Assiut station provided the worst precision. This could be due to the baseline 
length, which is the longest one among all test stations' baselines. Thus, according to Öğütcü 
and Kalaycı (2018), Dogan et al. (2018), and Dawson and Woods (2010), the errors' magnitude 
will be the highest. After all parameters’ tests, the final ANN simulation (Fig. 10) was designed 
based on the optimum values obtained from the results.  
Tables 8 and 9 display the application stage results for single- and dual-frequency observations, 
respectively. As shown in these tables, the coordinates deviations (dX, dY, dZ) and the 3D 
position error were calculated for each test station. The improvement that occurred due to the 
application of classification and ANN algorithms in the two cases of observations, as well as 
the outputs of IGS final orbits in the case of dual-frequency observations were determined based 
on the 3D position error and presented in Table 10. Analyzing the results in Table 9 shows that 
applying the classification algorithm improved the single- and dual-frequency observations by 
39% and 44%, respectively. Obviously, this improvement increased to 79% and 72% for single- 
and dual-frequency observations, respectively, when the ANN algorithm was applied.
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Table 6. The SD of X, Y, and Z coordinates, 3D position error, and elapsed time for three different types of ANN 
 

 

 

 

 

 

 

Table 7. The averages of SDs in the directions of the coordinate axes, 3D position error, and elapsed time for the four groups of initialization numbers 

Station 

Group 1 Group 2 Group 3 Group 4 

Nt values Elapsed time 
(h) Nt values Elapsed time 

(h) Nt values Elapsed time 
(h) Nt values Elapsed time 

(h) 

1–10 0.02 10–100 0.15 100–1000 1.5 1000–10,000 15.5 

σm(X) 

(m) 

σm(Y) 

(m) 
σm(Z) 

(m) 
σm(P) 

(m) 
σm(X) 

(m) 
σm(Y) 

(m) 
σm(Z) 

(m) 
σm(P) 

(m) 
σm(X) 

(m) 
σm(Y) 

(m) 
σm(Z) 

(m) 
σm(P) 

(m) 
σm(X) 

(m) 
σm(Y) 

(m) 
σm(Z) 

(m) 
σm(P) 

(m) 

Baltim 0.080 0.195 0.040 0.215 0.068 0.174 0.036 0.191 0.042 0.137 0.019 0.145 0.017 0.080 0.009 0.083 

Suez 0.094 0.128 0.105 0.190 0.087 0.119 0.101 0.179 0.068 0.085 0.082 0.137 0.045 0.035 0.044 0.074 

Helwan 0.067 0.177 0.086 0.208 0.058 0.142 0.067 0.168 0.052 0.107 0.049 0.129 0.034 0.065 0.030 0.080 

Cairo 0.083 0.044 0.035 0.100 0.066 0.036 0.036 0.084 0.047 0.030 0.036 0.066 0.026 0.023 0.024 0.043 

Assiut 0.184 0.216 0.572 0.639 0.164 0.196 0.453 0.520 0.134 0.172 0.350 0.413 0.103 0.125 0.249 0.297 
 

 

Station 

Pattern net Fit net Cascade forward net 

σx 

(m) 
σY 

(m) 
σZ 

(m) 
σP 

(m) 

Elapsed 
time 
(s) 

σx 

(m) 
σY 

(m) 
σZ 

(m) 
σP 

(m) 

Elapsed 
time 
(s) 

σx 

(m) 
σY 

(m) 
σZ 

(m) 
σP 

(m) 

Elapsed 
time 
(s) 

Baltim 0.090 0.263 0.071 0.287 44.4 0.056 0.219 0.030 0.228 38.8 0.043 0.188 0.021 0.194 27.9 

Suez 0.078 0.118 0.157 0.211 47.3 0.072 0.101 0.106 0.163 36.2 0.077 0.099 0.103 0.162 24.4 

Helwan 0.127 0.193 0.089 0.248 45.8 0.089 0.152 0.076 0.192 37.4 0.084 0.146 0.079 0.186 27.2 

Cairo 0.161 0.068 0.118 0.211 46.9 0.115 0.044 0.066 0.140 35.1 0.084 0.029 0.048 0.101 28.9 

Assiut 0.227 0.224 0.448 0.550 49.7 0.179 0.198 0.431 0.507 39.5 0.147 0.179 0.425 0.484 26.8 
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Table 8. The differences in coordinates between the known points and the output data, and the position errors for the three main stages  
in the case of GNSS- single frequency 

Station 

Post-processing  
(broadcast ephemerides) Classification algorithm ANN algorithm 

dX 
(m) 

dY 
(m) 

dZ 
(m) 

Position 
error 
(m) 

dX 
(m) 

dY 
(m) 

dZ 
(m) 

Position 
error 
(m) 

dX 
(m) 

dY 
(m) 

dZ 
(m) 

Position 
error 
(m) 

Baltim 0.118 0.309 0.046 0.334 0.090 0.220 0.047 0.242 0.031 0.06 0.021 0.071 

Suez 0.145 0.262 0.134 0.328 0.104 0.141 0.112 0.208 0.052 0.054 0.063 0.098 

Helwan 0.123 0.277 0.204 0.365 0.075 0.190 0.092 0.224 0.078 0.081 0.051 0.123 

Cairo 0.093 0.045 0.054 0.117 0.081 0.046 0.031 0.098 0.042 0.027 0.030 0.058 

Assiut 0.286 0.330 0.992 1.084 0.190 0.241 0.675 0.741 0.101 0.132 0.381 0.416 

Table 9. The coordinates’ differences between the known points and the output data, and the position errors for the three main stages and IGS final orbits  
in the case of GNSS- dual frequency 

Station 

Post-processing  
(broadcast ephemerides) Post-processing (final orbits) Classification algorithm ANN algorithm 

dX 
(m) 

dY 
(m) 

dZ 
(m) 

Position 
error 
(m) 

dX 
(m) 

dY 
(m) 

dZ 
(m) 

Position 
error 
(m) 

dX 
(m) 

dY 
(m) 

dZ 
(m) 

Position 
error 
(m) 

dX 
(m) 

dY 
(m) 

dZ 
(m) 

Position 
error 
(m) 

Baltim 0.050 0.020 0.003 0.054 0.001 0.002 0.004 0.005 0.034 0.011 0.009 0.037 0.011 0.007 0.008 0.015 

Suez 0.006 0.003 0.006 0.009 0.003 0.007 0.003 0.008 0.003 0.002 0.004 0.005 0.002 0.003 0.004 0.005 

Helwan 0.047 0.040 0.019 0.065 0.015 0.015 0.011 0.024 0.024 0.021 0.024 0.040 0.017 0.016 0.021 0.031 

Cairo 0.022 0.014 0.013 0.029 0.015 0.010 0.019 0.026 0.017 0.012 0.015 0.026 0.011 0.007 0.012 0.018 

Assiut 0.157 0.051 0.322 0.362 0.044 0.083 0.110 0.145 0.103 0.062 0.220 0.251 0.051 0.021 0.153 0.163 
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Table 10. Precision improvement due to applying classification and ANN algorithms in the two cases of observations 

Percentage of improvement (%) 

Station 
Single-frequency observations Dual-frequency observations 

Classification algorithm ANN algorithm Classification algorithm ANN algorithm IGS final orbits 

Baltim 28 79 31 72 91 

Suez 37 70 44 44 11 

Helwan 39 66 38 52 63 

Cairo 16 50 10 38 10 

Assiut 32 62 31 55 60 
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Figure 9. RMSE of X, Y, and Z directions and 3D position error according to the different groups of the number of initializations 
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Furthermore, comparison of the obtained improvement due to the ANN algorithm with that 
produced by IGS final orbits shows that the ANN algorithm is close to IGS final orbits’ outputs. 
Notwithstanding, the improvement due to the ANN algorithm at Suez and Cairo stations is 
better than that of IGS's final orbits. This superiority can be interpreted as the accuracy of 
broadcast observations. In other words, when the observations are collected through the best 
conditions, the broadcast outputs will be more accurate, thereby improving the ANN outputs. 
There is an anomaly at Suez station for dual-frequency observations, where the ANN algorithm 
provided a percentage of improvement similar to the classification algorithm. According to 
Tables 8–10, it can be stated that the proposed integration of satellite configuration and ANN 
has the capability for providing a significant improvement in the single-frequency GNSS 
observations in real time, as well as achieving precision in the dual-frequency GNSS 
observations close to that of IGS final orbits. 

 
 Figure 10. The ANN designed from the results; its type is cascade forward net 

5. CONCLUSIONS 
Improving the accuracy of single-frequency GNSS observations in the absence of final IGS 
orbits is the essential aim of this study. An algorithm was formulated based on the ANN 
approach, considering realizing the optimum performance at each ANN layer to achieve this 
goal. Furthermore, a classification stage of GNSS observations was conducted by implementing 
a designed algorithm to produce the input layer's optimal values of coordinates. This research 
found that the numbers in binary format give more accurate results than those in decimal format. 
For the hidden layer, there are validation tests performed to determine the best variables with 
high accuracy. However, the results revealed that increasing the NHL has not provided any 
significant improvement. So, the NHL = 1 was selected as the optimal value, while the NON = 
10 provided an acceptable precision. Besides, the results of selecting the transfer functions’ 
constellation in the hidden and output layers demonstrated that Logsig–Purelin constellation is 
the most accurate. Again, ANN type testing indicated that the cascade forward net is more 
flexible than the fit net and the pattern net, which produced an acceptable precision with less 
execution time. The last test for the hidden layer variables is the NOI test, which represents the 
most influential variable on accuracy. This test was performed through four groups of data, and 
the results showed that each group produced a certain precision at a specific execution time.  
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Noticeably, the data trend indicated a positive relationship between the NOI and precision in 
terms of SDs. Interestingly, it has been observed that the improvement and the best precision 
are achieved if the ANN is set at a group period rather than a specific value of the NOI. 
Furthermore, the output layer's outputs were filtered by removing the outliers before applying 
the LSM to estimate the best values. It is important to note that the simulation became too ready 
for prediction operation after applying the obtained optimal variables. As it is known, the 
DGNSS technique eliminates the systematic biases such as ionospheric delay, but for the long 
baselines such as the Assiut station, this error caused the lowest quality of the results. The 
simulation results improved by 79% and 72% in single- and dual-frequency observations, 
respectively, in the 3D position, while the results from the final IGS orbit showed 91% 
improvement. It is essential to mention that applying the two stages, classification and ANN, 
on dual-frequency observations showed better improvement than IGS final orbits’ outputs at 
two test stations. According to the results of this study, it can be concluded that the precision 
of the IGS DGNSS in the two cases of observations excessively increased in real time due to 
the proposed integration. As well, the results proved that implementing ANN with its optimal 
variables represented an important role in GNSS applications. This study fulfilled these results 
in the study conditions; accordingly, it is recommended to apply it in other conditions to decide 
if this investigation can be applied for all conditions all over the world.  
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