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Abstract

This paper presents FPGA and softcore CPU based solution for large datasets parallel core
calculation using rough set methods. Architectures shown in this paper have been tested
on two real datasets running presented solutions inside FPGA unit. Tested datasets had
1 000 to 10 000 000 objects. The same operations were performed in software implemen-
tation. Obtained results show the big acceleration in computation time using hardware
supporting core generation in comparison to pure software implementation.
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1 Introduction

The biggest problem associated with creating
optimal decision support systems is the time needed
to process input data, with particular emphasis on
large data sets, the so-called big data. Big data is
a term referring to large, diverse and variable data
sets, whose processing and analysis is difficult but
at the same time valuable, because it can lead to the
acquisition of new knowledge. In practical appli-
cations, the concept of a large data set is relative
and means a situation when the set cannot be pro-
cessed using simple and commonly available meth-
ods [17]. Depending on the purpose of the chosen
method and the complexity of the algorithm, this
may mean a calculated size in megabytes, gigabytes
or terabytes.

One of the examples of such huge datasets are
data read from sensors – like from production line.
Every part of such line has tens of sensors providing
data all the time, which creates huge stream of read-
ings. Amount of obtained data creates huge datasets

that has to be processed for e.g. estimating future
failures and thus avoiding downtime.

There were many methods created for process-
ing such datasets and focusing on knowledge ex-
traction and minimizing amount of data that has
to be processed. One of them are rough sets the-
ory allowing to easily limit number of attributes
(columns) in input datasets to these, that are pro-
vide the valuable information. In these methods two
definitions exist – reduct and core. Reducts are sets
of columns that provide useful information consid-
ering removing redundant information, while cores
are sets of attributes that cannot be removed from
initial set under any circumstances. In other words,
the attributes existing in the core must also exist in
all the reducts.

The rough sets theory developed in the eight-
ies of the twentieth century by Prof. Z. Pawlak is
an useful tool for data analysis. Therefore a lot of
rough sets algorithms were implemented in scien-
tific and commercial tools for data processing. But
data processing efficiency problem is arising with
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the increase of the amount of data. Huge datasets
are commonly referred to as Big Data.

Some of the solutions developed and oriented
for data-type software implementations and algo-
rithms with smaller computational complexity are
shown below. An example of such an approach
is research done in [1]. The authors presented
an algorithm for feature extraction for a specific
type of data with linear complexity. An additional
software approach to dealing with big datasets in-
volves parallel processing. One of the methods is
related to the implementation of algorithms using
MapReduce. The parallel technique for computing
rough set approximations is presented in [28]. Al-
gorithms for core and reduct calculation based on
the distributed programming model of MapReduce
can be found in [3]. Other types of approaches to
fast processing data sets were shown in [4], where
Binarized Neural Networks (BNN) were presented
and are based on the optimization of computational
complexity and memory demand. In [6], a frame-
work for integrating hardware and software opti-
mizations for sparse CNNs is shown. It is worth
adding, that [7] presented an AlphaGo Policy Net-
work using DCNN accelerator on FPGA.

Another solution for processing big datasets are
hardware implementations of existing algorithms.
This type of approach can be accomplished using
FPGA units. Field Programmable Gate Arrays (FP-
GAs) are group of digital integrated circuits. Func-
tionality of these units can be programmed by engi-
neer at any time. This feature gives the possibility
of evaluating any boolean function. That’s why they
can be used for supporting rough sets calculations,
especially if algorithms of polynomial complexity
and ability of processing parts of data in parallel are
considered.

At the moment there are some hardware imple-
mentations of specific rough set methods. The idea
of sample processor generating decision rules from
decision tables was described in [21]. In [14] the
authors presented the architecture of rough set pro-
cessor based on cellular networks described in [16].
In [8] a concept of hardware device capable of mini-
mizing the large logic functions created on the basis
of discernibility matrix was developed. A more de-
tailed summary of the existing ideas and hardware
implementations of rough set methods can be found
in [9] and in [27]. It should be noted, that [19] intro-

duced efficient heuristics for computing from data
table basic tools (like lower and upper approxima-
tions, positive regions, reducts) for rough set meth-
ods. Their heuristics are feasible for large data ta-
bles but are mainly focused on software solutions,
while our proposition is focused on the hardware
approach. In [18] implementation of the LEM2 al-
gorithm on FPGA is presented.

Previous authors’ research results focused on
the subject of hardware implementations of rough
sets methods can be found in previously published
papers: the idea of the processor for rough sets
methods [25], hardware-supported reduct calcula-
tion [10], the first approach to core generation us-
ing FPGA based solution [11], hardware unit for
processing datasets consisting of millions of objects
[12], a two-stage algorithm for finding reduct [5] as
well as finding minimal reduct with two FPGA de-
vices [2].

This paper is a new proposition for parallel
hardware supported core calculation for big datasets
and introduces modification of methods described
in [11] and [13]. According to [11], the main fo-
cus was put on small datasets (up to 107 objects)
and all operations were implemented as combina-
tional logic, which gave huge acceleration in cal-
culation speed, but was very limited to the amount
of data, that could be processed. In [13], the target
was to perform a sequential operation on core cal-
culation based on the idea presented in [11], but this
approach was limited to a single core.

The paper is organized as follows. In Section
2 some information about the notion of core and
datasets used during research is provided. It in-
cludes also the pseudocode of the algorithms. Sec-
tion 3 focuses on description of hardware solutions,
while Section 4 is devoted to the experimental re-
sults.

2 Introductory Information

2.1 The Notion of Core in the Rough Set
Theory

Let DT = (U,A ∪ {d}) be a decision table,
where U is a set of objects, A is a set of condi-
tion attributes and d is a decision attribute. In de-
cision table some of the condition attributes from
A may be superfluous (redundant in other words).
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datasets used during research is provided. It in-
cludes also the pseudocode of the algorithms. Sec-
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This means that their removal cannot worsen the
classification. The set C ⊆ A of all indispensable
condition attributes is called the core. None of its
elements can be removed without affecting the clas-
sification power of all condition attributes. In order
to compute the core we can use discernibility matrix
[DM(x,y)]x,y∈U , where DM(x,y) = {a ∈ A : a(x) ̸=
a(y) and d(x) ̸= d(y)}.

The core is the set of all single element en-
tries of the discernibility matrix, i.e. CORE =∪

x,y∈U,cardinality(DM(x,y))=1 DM(x,y). A much more
detailed description of the concept of the core can
be found, for example, in the article [22] or in the
book [24].

Algorithm presented in following subsections
are based on available knowledge, but were sub-
stantially redesigned to provide possibility of their
implementation in hardware units. Biggest effort
was put on parallelism and identification of most
computation-time consuming parts.

2.2 Principle of Core Calculation

One of the most common algorithm for core cal-
culation using discernibility matrix is presented as
pseudocode in this subsection. The biggest limita-
tion of this algorithm using direct implementation,
mainly for big datasets, is need for storing discerni-
bility matrix DM as two dimensional array with size
of |U |x|U |. Hardware version of core calculation
algorithm called CORE-PHIDM (described in Sec-
tion 2.3) uses principles of this approach to core cre-
ation.

Algorithm 1 Definition-based Core Calculation Al-
gorithm

Input to the definition-based algorithm is dis-
cernibility matrix DM and output is core C. Core is
initialized as empty set in line 1. Two loops in lines

2 and 3 iterate over all objects (denoted as U) in
discernibility matrix. Condition instruction in line
4 checks if matrix cell contains only one attribute.
If so, then this attribute is added to the core C.

2.3 Algorithm CORE-PHIDM for Hard-
ware Supported Core Calculation
With No Discernibility Matrix

The main concept of CORE-PHIDM (CORE
Parallel Hardware Indirect Discernibility Matrix)
algorithm is based on a property of singleton, which
is cell from discernibility matrix consisting of the
only one attribute. This property tells that any
singleton cannot be removed without affecting the
classification power. As it was mentioned, biggest
problem with direct use of discernibility matrix
based algorithms when dealing with big datasets
is amount of memory needed to store the matrix.
Such solution cannot be run in hardware because of
FPGA resources limitations.

This is the reason why we proposed the hard-
ware implementable algorithm – CORE-PHIDM.
Main idea is to divide the entire dataset into parts
stored in multiple independent memory units pro-
viding information for hardware modules. These
parts are subsequently processed by the units. For
clarity of presentation, pseudocode of the algorithm
shows the most simple configuration of CORE-
PHIDM block: one instance of subCORE module
with two memory blocks denoted as RAMcmn (com-
mon RAM connected to all modules) and RAM1
(first RAMn for single and only subCORE mod-
ule). Details related to hardware implementation
and naming is described in Section 3. Pseudocode
for the algorithm is given below:

tion 4 is devoted to the experimental results.
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2 and 3 iterate over all objects (denoted as U) in
discernibility matrix. Condition instruction in line 4
checks if matrix cell contains only one attribute. If
so, then this attribute is added to the core C.

2.3 Algorithm CORE-PHIDM for
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The main concept of CORE-PHIDM (CORE
Parallel Hardware Indirect Discernibility Matrix)
algorithm is based on a property of singleton, which
is cell from discernibility matrix consisting of the only
one attribute. This property tells that any singleton
cannot be removed without affecting the classification
power. As it was mentioned, biggest problem with
direct use of discernibility matrix based algorithms
when dealing with big datasets is amount of memory
needed to store the matrix. Such solution cannot be
run in hardware because of FPGA resources limita-
tions.

This is the reason why we proposed the hardware
implementable algorithm – CORE-PHIDM. Main
idea is to divide the entire dataset into parts stored
in multiple independent memory units providing
information for hardware modules. These parts
are subsequently processed by the units. For
clarity of presentation, pseudocode of the algorithm
shows most simple configuration of CORE-PHIDM
block: one instance of subCORE module with two
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Algorithm 2 CORE-PHIDM Algorithm

Input to the algorithm CORE-PHIDM is deci-
sion table DT , and output is core C. In the first step
core C is initialized as empty set. Two loops in lines
2 and 4 are responsible for choosing parts of input
decision table. Decision table DT is divided into m
parts, where each of them have the size of n objects.
Lines 3 and 5 are responsible for loading chosen
parts of dataset into RAM memories implemented
in FPGA. Two loops in lines 6 and 7 take subse-
quent objects from decision table parts for compar-
ison. Line 8 performs the comparison between deci-
sion attribute’s value of two objects x and y. If these
two objects belong to different decision classes, the
rest of the algorithm is processed. count variable,
responsible for storing the number of differences on
condition attributes values between objects x and y
is set to 0 in line 9. Loop in line 10 iterates over
set of condition attributes A. Values of a condi-
tion attribute is compared between objects x and y
in line 11. In case of difference, the count variable
is incremented and a attribute is stored in candidate
variable. When the attribute loop finishes, attribute

in candidate variable is added to the core if count
variable is equal to 1 and this attribute is not in core
(lines 16 to 18).

It should be noted, that CORE-PHIDM mod-
ule in complex configurations, where more than
one subCORE block is used, loads more subsequent
parts of DT into the RAMn memories (line 5). Simi-
larly, comparisons between decision attribute’s val-
ues and condition attributes’ values for objects take
place between object selected from RAMcmn and ob-
jects selected from each RAMn block of existing
subCORE modules (lines 8 to 19).

2.4 Example of Core Calculation for
Definition-based Algorithm

Table 1 presents exemplary decision table con-
sisting of 4 condition attributes and one decision at-
tribute. Dataset describes decision related to con-
crete mixing on basis of thresholded and descriptive
readings from 4 types of sensors: outlook, temper-
ature value, humidity and wind strength.

Table 1. Exemplary dataset consisting of 4
condition and 1 decision attribute

ID outlook temp humidity windy mixing
1 sunnny high high no no
2 sunnny high high yes no
3 cloudy high high no yes
4 sunnny low high no yes
5 sunnny high normal no yes
6 sunnny high normal yes no
7 cloudy high normal yes yes
8 sunnny low high no no
9 sunnny high normal no yes
10 sunnny low normal no yes
11 sunnny low normal yes yes
12 cloudy low high yes yes

Before core is calculated, discernibility matrix
has to be created first. Using formulas presented
in Section 2.1 for calculating discernibility matrix
DM, this type of matrix was created for Table 1 and
os presented in Table 2. Matrix is symmetrical to
it’s diagonal, so only lower triangle is calculated.
Additionally, to limit size of the table, discernibil-
ity matrix DM was calculated for only 6 first objects
from dataset. The result is shown in Table 2.

According to definition-based core calculation
algorithm described in Section 2.4, example of core
calculation for discernibility matrix DM shown in
Table 2 is presented below. In the beginning, core

memory blocks denoted as RAMcmn (common RAM
connected to all modules) and RAM1 (first RAMn

for single and only subCORE module). Details
related to hardware implementation and naming is
described in Section 3. Pseudocode for the algorithm
is given below:

CORE-PHIDM Algorithm

INPUT: decision table DT = (U,A∪{d}), two nat-
ural number n,m > 0

OUTPUT: core C ⊆ A
1: C ← ∅
2: for cnt1 ← 0 to m− 1 do
3: RAMcmn ← {x ∈ U : xcnt1·n to x(cnt1+1)·n−1}
4: for cnt2 ← cnt1 to m− 1 do
5: RAM1 ← {x ∈ U : xcnt2·n to x(cnt2+1)·n−1}
6: for x ∈ RAMcmn do
7: for y ∈ RAM1 do
8: if d(x) �= d(y) then
9: count ← 0

10: for a ∈ A do
11: if a(x) �= a(y) then
12: count ← count+ 1
13: candidate ← a
14: end if
15: end for
16: if count = 1 and candidate �∈ C

then
17: C ← C ∪ {candidate}
18: end if
19: end if
20: end for
21: end for
22: end for
23: end for

Input to the algorithm CORE-PHIDM is decision
table DT , and output is core C. In the first step core
C is initialized as empty set. Two loops in lines 2 and
4 are responsible for choosing parts of input decision
table. Decision table DT is divided into m parts,
where each of them have the size of n objects. Lines
3 and 5 are responsible for loading chosen parts of
dataset into RAM memories implemented in FPGA.
Two loops in lines 6 and 7 take subsequent objects

from decision table parts for comparison. Line 8 per-
forms the comparison between decision attribute’s
value of two objects x and y. If these two objects
belong to different decision classes, the rest of the
algorithm is processed. count variable, responsible
for storing the number of differences on condition at-
tributes values between objects x and y is set to 0
in line 9. Loop in line 10 iterates over set of condi-
tion attributes A. Values of a condition attribute is
compared between objects x and y in line 11. In case
of difference, the count variable is incremented and a
attribute is stored in candidate variable. When the
attribute loop finishes, attribute in candidate vari-
able is added to the core if count variable is equal to
1 and this attribute is not in core (lines 16 to 18).

It should be noted, that CORE-PHIDM mod-
ule in complex configurations, where more than one
subCORE block is used, loads more subsequent parts
of DT into the RAMn memories (line 5). Similarly,
comparisons between decision attribute’s values and
condition attributes’ values for objects take place be-
tween object selected from RAMcmn and objects se-
lected from each RAMn block of existing subCORE
modules (lines 8 to 19).

2.4 Example of Core Calculation for
Definition-based Algorithm

Table 1 presents exemplary decision table consisting
of 4 condition attributes and one decision attribute.
Dataset describes decision related to concrete mix-
ing on basis of thresholded and descriptive readings
from 4 types of sensors: outlook, temperature value,
humidity and wind strength.
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to be created first. Using formulas presented in Sec-
tion 2.1 for calculating discernibility matrixDM , this
type of matrix was created for Table 1 and os pre-
sented in Table 2. Matrix is symmetrical to it’s diago-
nal, so only lower triangle is calculated. Additionally,
to limit size of the table, discernibility matrix DM
was calculated for only 6 first objects from dataset.
Result is shown in Table 2.

According to definition-based core calculation al-
gorithm described in Section 2.4, example of core cal-
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C is empty. Two main loops make the first iteration
passing through all cells of the discernibility matrix.
The condition of adding the attribute to the core is
checked for each of them. The first such case occurs
for the cell at the intersection of objects 1 and 3.
This cell contains only one attribute - {o}. This at-
tribute does not exist in the core, so it is added to it,
so: C = {o}. After completing the remaining algo-
rithm steps, the final core C = {o, t,h,w}, what cor-
responds to C = {outlook, temp,humidity,windy}.

Table 2. Discernibility matrix for 6 first objects
from exemplary dataset

ID 1 2 3 4 5 6
1 /0
2 /0 /0
3 {o} {o,w} /0
4 {t} {t,w} /0 /0
5 {h} {h,w} /0 /0 /0
6 /0 /0 {o,h,w} {t,h,w} {w} /0

2.5 Data to Conduct Experimental Re-
search

In this paper, we present the results of the
conducted experiments using two datasets: Poker
Hand Dataset (created by Robert Cattral and Franz
Oppacher) and data about children with insulin-
dependent diabetes mellitus (type 1) (created by
Jaroslaw Stepaniuk).

First dataset was obtained from UCI Machine
Learning Repository [15]. Each of 1 000 000
records is an example of a hand consisting of five
playing cards drawn from a standard deck of 52.
Each card is described using two attributes (suit and
rank), for a total of 10 predictive attributes. There
is one decision attribute that describes the ”Poker
Hand”. Decision attribute describes 10 possible
combinations of cards in descending probability in
the dataset: nothing in hand, one pair, two pairs,
three of a kind, straight, flush, full house, four of a
kind, straight flush, royal flush

Insulin-dependent diabetes mellitus is a chronic
disease of the body’s metabolism characterized by
an inability to produce enough insulin to process
carbohydrates, fat, and protein efficiently. Treat-
ment requires injections of insulin. Twelve condi-
tion attributes, which include the results of physi-
cal and laboratory examinations and one decision
attribute (microalbuminuria) describe the database

used in our experiments. The data collection so far
consists of 107 cases. The database is shown at the
end of the paper [23]. A detailed analysis of the
above data (only with the use of software systems)
is in chapter 6 of the book [24].

The Poker Hand database was used for creating
smaller datasets consisting of 1 000 to 500 000 of
objects by selecting given number of rows of orig-
inal dataset maintaining decision class distribution.
Diabetes database was used for generating bigger
datasets consisting of 1 000 to 1 000 000 of objects.
New datasets were created by multiplying the rows
of original dataset.

Created datasets had to be transformed to bi-
nary version. Numerical values were discretized
and each attributes’ value was encoded using four
bits for both datasets. Every single object was de-
scribed on 44 bits for Poker Hand and 52 bits for Di-
abetes. To fit to memory boundaries in both cases,
objects descriptions had to be extended to 64 bits
words filling unused attributes with binary 0’s.

3 Hardware Implementation

Block diagram of the hardware implementation
of the algorithm CORE-PHIDM is shown on Fig-
ure 1. System consists of the following blocks:

– RAMcmn – a part of the decision table that is
compared with the parts of the decision table
stored in the other subCORE Generator Blocks;

– subCORE Generator Block – a block (described
later in this section) that performs comparison
between two parts of the decision table.

With every iteration of loop 2-23 (see CORE-
PHIDM algorithm in Section 2.3) RAMcmn is filled
with a part of the decision table (in line 3). Every
subCORE also contains the parts of the decision ta-
ble. subCORE calculates the value of the sub-core
in a way described in lines 7-19. Because there can
be more than one instance of the subCORE, loop
7-19 can be multiplied and executed in parallel for
faster calculations.
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SubCORE
Generator

Block

CORE

...

x1

x2

xN

RAMcmn

a1 a2 aM d...

CO
MP

RA
M

su
bC

OR
E

SubCORE
Generator

Block

CO
MP

RA
M

su
bC

OR
E

SubCORE
Generator

Block

CO
MP

RA
M

su
bC

OR
E

...

...

...

1

2

N
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Block diagram of the subCORE is shown in
Figure 2. Block consists of the following compo-
nents:

– CB – comparator block, that performs compar-
ison between two objects from decision table;
when attributes have different values the corre-
sponding bit is equal 1, otherwise 0 (line 11);

– SD – singleton detector passes from input to out-
put only singletons; when the value on the in-
put is not singleton, the output consists of all 0’s
(line 16);

– OR gates cascade – every output of SD is OR’ed
and the result is subCORE (line 17);

– RAMn – RAM for storing the part of the decision
table (line 5);

– MUXn – multiplexer controlled by Control
Logic, that selects the following object for com-
parison (line 7);

– Control Logic – block that generates the se-
quence for selecting the following objects from
RAM (line 7).
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Figure 2. subCORE Generator Block block
diagram

Data from RAMcmn, consisting the objects from
decision table is passed to the CB’s. Second input
of every CB is connected to MUXn, that selects the
following object from RAMn. All CB’s outputs are
filtered by the SD, and then OR’ed together to ob-
tain the sub-core.

3.1 Example of Operation

For the clarity of presentation, only the most
important data flow operations are shown. Hard-
ware processing unit require dataset to be trans-
formed into binary version. Dataset shown in Ta-
ble 1 after transformation is presented in Table 3.

For clarity of presentation and with corre-
spondce to CORE-PHIDM algorithm described in
Section 2.3 example shows most simple configu-
ration of CORE-PHIDM block: one instance of
subCORE module with two memory blocks de-
noted as RAMcmn (common RAM connected to all
modules) and RAM1 (RAM for first subCORE mod-
ule).
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Block diagram of the subCORE is shown in
Figure 2. Block consists of the following compo-
nents:

– CB – comparator block, that performs compar-
ison between two objects from decision table;
when attributes have different values the corre-
sponding bit is equal 1, otherwise 0 (line 11);

– SD – singleton detector passes from input to out-
put only singletons; when the value on the in-
put is not singleton, the output consists of all 0’s
(line 16);

– OR gates cascade – every output of SD is OR’ed
and the result is subCORE (line 17);

– RAMn – RAM for storing the part of the decision
table (line 5);

– MUXn – multiplexer controlled by Control
Logic, that selects the following object for com-
parison (line 7);

– Control Logic – block that generates the se-
quence for selecting the following objects from
RAM (line 7).
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Data from RAMcmn, consisting the objects from
decision table is passed to the CB’s. Second input
of every CB is connected to MUXn, that selects the
following object from RAMn. All CB’s outputs are
filtered by the SD, and then OR’ed together to ob-
tain the sub-core.

3.1 Example of Operation

For the clarity of presentation, only the most
important data flow operations are shown. Hard-
ware processing unit require dataset to be trans-
formed into binary version. Dataset shown in Ta-
ble 1 after transformation is presented in Table 3.

For clarity of presentation and with corre-
spondce to CORE-PHIDM algorithm described in
Section 2.3 example shows most simple configu-
ration of CORE-PHIDM block: one instance of
subCORE module with two memory blocks de-
noted as RAMcmn (common RAM connected to all
modules) and RAM1 (RAM for first subCORE mod-
ule).
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Values of the CORE-PHIDM block inputs are:

– RAMcmn = 00111 01111 10110 10101 10011
01011 11010 00101 10011 10001 11001 11100,

– RAM1 = 00111 01111 10110 10101 10011
01011 11010 00101 10011 10001 11001 11100,

what corresponds to data in exemplary binary de-
cision table. Most significant bit (MSB) describes
decision attribute, while LSB correlates to outlook
attribute.

Table 3. Exemplary binary dataset consisting of 4
condition and 1 decision attribute

ID outlook temp humidity windy mixing
1 1 1 1 0 0
2 1 1 1 1 0
3 0 1 1 0 1
4 1 0 1 0 1
5 1 1 0 0 1
6 1 1 0 1 0
7 0 1 0 1 1
8 1 0 1 0 0
9 1 1 0 0 1
10 1 0 0 0 1
11 1 0 0 1 1
12 0 0 1 1 1

Muliplexer MUXn chooses ID1 object from
RAMcmn represented by 00111 in the first clock
cycle. This object is compared with all remain-
ing objects in RAM1 by comparators CB. Calcu-
lated value corresponds to the first column of dis-
cernibility matrix created for the dataset. Binary
word created by comparators is 0000 0000 0001
0010 0100 0000 1101 0000 0100 0110 1110 1011.
Each of 4-bit subsequences is passed to given
OR gate connected in cascade. Parallelly, whole
word created by comparators is routed to the SD
block that detects 4-bits long subsequences contain-
ing only one logical 1. Result created by SD is
001110001000. Each bit of created value controls
single OR gate in cascade. MSB is connected to the
first OR gate. Values of inputs and outputs of every
gate are:

– IN1CB = 0000; IN1PREV = 0000; IN1SD = 0;
OUT1 = 0000,

– IN2CB = 0000; IN2PREV = 0000; IN2SD = 0;
OUT2 = 0000,

– IN3CB = 0001; IN3PREV = 0000; IN3SD = 1;
OUT3 = 0001,

– IN4CB = 0010; IN4PREV = 0001; IN4SD = 1;
OUT4 = 0011,

– IN5CB = 0100; IN5PREV = 0011; IN5SD = 1;
OUT5 = 0111,

– IN6CB = 0000; IN6PREV = 0111; IN6SD = 0;
OUT6 = 0111,

– IN7CB = 1101; IN7PREV = 0111; IN7SD = 0;
OUT7 = 0111,

– IN8CB = 0000; IN8PREV = 0111; IN8SD = 0;
OUT8 = 0111,

– IN9CB = 0100; IN9PREV = 0111; IN9SD = 1;
OUT9 = 0111,

– IN10CB = 0110; IN10PREV = 0111; IN10SD = 0;
OUT10 = 0111,

– IN11CB = 1110; IN11PREV = 0111; IN11SD = 0;
OUT11 = 0111,

– IN12CB = 1011; IN12PREV = 0111; IN12SD = 0;
OUT12 = 0111,

INCB input corresponds to value calculated by
given comparator from CB block. INPREV input is
connected with OUT output of preceding gate. Out-
put of last gate is passed to TEMP register.

In next clock cycles CORE-PHIDM module
processes rest of the objects in RAMcmn by compar-
ing them with remaining part of dataset in RAM1.
Every time previous value of CORE output is
merged with it’s current value and the subCORE by
OR operation.

Finally created core is C = 1111, what corre-
sponds to C = {outlook, temp,humidity,windy}.

4 Experimental Results

Software version of CORE-PHIDM algorithm
described in Section 2.3 was implemented in C lan-
guage. It should be noted, that implementation used
only one PC CPU core to create basis for compar-
ision between PC and FPGA-based solution. The
results of the software execution were obtained us-
ing a PC equipped with an 8 GB RAM and 4-core
Intel Core i7 3632QM with maximum 3.2 GHz in
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Turbo mode clock speed running Windows 10 op-
erational system. The source code of application
was compiled using the GNU GCC 9.2 compiler.

Quartus II 13.1 was used for design, compila-
tion, synthesis and verifying simulation of the hard-
ware implementation in VHDL language. Syn-
thesized hardware blocks were downloaded and
run on TeraSIC DE-3 equipped with Stratix III
EP3SL150F1152C2N FPGA chip. FPGA clock
running at 50 MHz for the sequential parts of the
project was derived from development board os-
cillator. Implemented CORE-PHIDM algorithm is
presented in Section 2.3.

Table 4. Comparison of execution time between
hardware and software implementation of

CORE-PHIDM algorithm for both datasets using 1
instance of subCORE module

Objects tH tS C = tS
tH Cclk = 64 tS

tH
— [s] [s] — —

Poker Hand dataset
1k 0.003 0.033 10.875 695.992

2.5k 0.013 0.143 11.119 711.632
5k 0.055 0.603 10.951 700.876

10k 0.207 2.410 11.623 743.851
25k 1.225 14.721 12.015 768.940
50k 4.710 58.726 12.469 798.043

100k 21.737 237.942 10.946 700.572
250k 130.947 1 515.449 11.573 740.674
500k 506.225 6 092.916 12.036 770.302
1M 1 850.523 24 313.094 13.138 840.864

Diabetes dataset
1k 0.003 0.018 5.911 378.325

2.5k 0.013 0.078 6.044 386.827
5k 0.055 0.328 5.953 380.980

10k 0.207 1.31 6.318 404.340
25k 1.225 8.002 6.531 417.978
50k 4.710 34.216 7.265 464.970

100k 21.737 135.309 6.225 398.390
250k 130.947 861.781 6.581 421.194
500k 506.225 3 464.821 6.844 438.043
1M 1 850.523 13 825.976 7.471 478.169

NIOS II softcore processor, as well as most
parts of embedded system were instantiated using
Qsys 13.1 tool. Software for NIOS II was imple-
mented in C language using NIOS II Software Build
Tools for Eclipse IDE.

Timing results were obtained using LeCroy
waveSurfer 104MXs-B (1 GHz bandwidth, 10
GS/s) oscilloscope. For longer times, hardware
time measurement units instantiated inside FPGA
were used.

It should be noticed, that PCs clock is clkPC
clkFPGA

=
64 times faster than development boards clock
source.

Table 5. Comparison of execution time between
hardware and software implementation of

CORE-PHIDM algorithm for both datasets using 2
instances of subCORE module

Objects tH tS C = tS
tH Cclk = 64 tS

tH
— [s] [s] — —

Poker Hand dataset
1k 0.002 0.033 17.770 1 137.250

2.5k 0.008 0.143 18.169 1 162.806
5k 0.0340 0.603 17.894 1 145.231
10k 0.127 2.410 18.991 1 215.453
25k 0.750 14.721 19.632 1 256.448
50k 2.882 58.726 20.375 1 304.003

100k 13.303 237.942 17.886 1 144.734
250k 80.139 1 515.449 18.910 1 210.261
500k 309.807 6 092.916 19.667 1 258.674
1M 1 132.511 24 313.094 21.468 1 373.971

Diabetes dataset
1k 0.002 0.018 9.659 618.183

2.5k 0.008 0.078 9.876 632.075
5k 0.034 0.328 9.727 622.521
10k 0.127 1.31 10.323 660.692
25k 0.750 8.002 10.672 682.977
50k 2.882 34.216 11.871 759.761

100k 13.303 135.309 10.171 650.969
250k 80.139 861.781 10.754 688.232
500k 309.807 3 464.821 11.184 715.762
1M 1 132.511 13 825.976 12.208 781.328

All calculations were performed using datasets
described in Section 2.5 with sizes between 1 000
and 1 000 000 objects. Data was preprocessed on
PC in terms of binary transformation and discretiza-
tion for all cases.

Table 4 presents results of the time elapsed
for hardware (tH) and software (tS) solution using
indirect row-by-row discernibility matrix calcula-
tion (algorithm CORE-PHIDM described in Sec-
tion 2.3) for both datasets.

Hardware based solution in first case uses 1
instance of subCORE generator block. Parts of
dataset are stored in RAMcmn and RAM1.

Last two columns in following tables describe
the speed-up factor without (C) and with (Cclk) tak-
ing clock speed factor between PC and FPGA into
consideration. Abbreviations in objects number are:
k = 103, M = 106.
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erational system. The source code of application
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NIOS II softcore processor, as well as most
parts of embedded system were instantiated using
Qsys 13.1 tool. Software for NIOS II was imple-
mented in C language using NIOS II Software Build
Tools for Eclipse IDE.

Timing results were obtained using LeCroy
waveSurfer 104MXs-B (1 GHz bandwidth, 10
GS/s) oscilloscope. For longer times, hardware
time measurement units instantiated inside FPGA
were used.

It should be noticed, that PCs clock is clkPC
clkFPGA

=
64 times faster than development boards clock
source.

Table 5. Comparison of execution time between
hardware and software implementation of

CORE-PHIDM algorithm for both datasets using 2
instances of subCORE module

Objects tH tS C = tS
tH Cclk = 64 tS

tH
— [s] [s] — —

Poker Hand dataset
1k 0.002 0.033 17.770 1 137.250

2.5k 0.008 0.143 18.169 1 162.806
5k 0.0340 0.603 17.894 1 145.231
10k 0.127 2.410 18.991 1 215.453
25k 0.750 14.721 19.632 1 256.448
50k 2.882 58.726 20.375 1 304.003

100k 13.303 237.942 17.886 1 144.734
250k 80.139 1 515.449 18.910 1 210.261
500k 309.807 6 092.916 19.667 1 258.674
1M 1 132.511 24 313.094 21.468 1 373.971
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1k 0.002 0.018 9.659 618.183

2.5k 0.008 0.078 9.876 632.075
5k 0.034 0.328 9.727 622.521
10k 0.127 1.31 10.323 660.692
25k 0.750 8.002 10.672 682.977
50k 2.882 34.216 11.871 759.761

100k 13.303 135.309 10.171 650.969
250k 80.139 861.781 10.754 688.232
500k 309.807 3 464.821 11.184 715.762
1M 1 132.511 13 825.976 12.208 781.328

All calculations were performed using datasets
described in Section 2.5 with sizes between 1 000
and 1 000 000 objects. Data was preprocessed on
PC in terms of binary transformation and discretiza-
tion for all cases.

Table 4 presents results of the time elapsed
for hardware (tH) and software (tS) solution using
indirect row-by-row discernibility matrix calcula-
tion (algorithm CORE-PHIDM described in Sec-
tion 2.3) for both datasets.

Hardware based solution in first case uses 1
instance of subCORE generator block. Parts of
dataset are stored in RAMcmn and RAM1.

Last two columns in following tables describe
the speed-up factor without (C) and with (Cclk) tak-
ing clock speed factor between PC and FPGA into
consideration. Abbreviations in objects number are:
k = 103, M = 106.
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Table 5 shows results for time elapsed for hard-
ware (tH) and software (tS) solution using indi-
rect row-by-row discernibility matrix calculation
for both datasets, where hardware part, in this case,
uses 2 instances of subCORE module. Parts of
dataset are stored in RAMcmn, RAM1 and RAM2.

Table 6 presents results for time elapsed for
hardware (tH) and software (tS) solution using in-
direct row-by-row discernibility matrix calculation
for both datasets, where hardware part in this case
uses 4 instances of subCORE module. Parts of
dataset were stored in RAMcmn, RAM1, RAM2,
RAM3 and RAM4.

Table 6. Comparison of execution time between
hardware and software implementation of

CORE-PHIDM algorithm for both datasets using 4
instances of subCORE module

Objects tH tS C = tS
tH Cclk = 64 tS

tH
— [s] [s] — —

Poker Hand dataset
1k 0.001 0.033 30.741 1 967.443

2.5k 0.005 0.143 31.432 2 011.655
5k 0.019 0.603 30.957 1 981.249

10k 0.073 2.410 32.855 2 102.733
25k 0.433 14.721 33.963 2 173.656
50k 1.666 58.726 35.249 2 255.924

100k 7.690 237.942 30.944 1 980.390
250k 46.323 1 515.449 32.715 2 093.752
500k 179.079 6 092.916 34.024 2 177.506
1M 654.631 24 313.094 37.140 2 376.970

Diabetes dataset
1k 0.001 0.018 16.710 1 069.457

2.5k 0.005 0.078 17.086 1 093.490
5k 0.019 0.328 16.828 1 076.962

10k 0.073 1.31 17.859 1 142.998
25k 0.433 8.002 18.462 1 181.550
50k 1.666 34.216 20.537 1 314.387

100k 7.690 135.309 17.596 1 126.176
250k 46.323 861.781 18.604 1 190.641
500k 179.079 3 464.821 19.348 1 238.269
1M 654.631 13 825.976 21.120 1 351.697

FPGA resources utilization is fixed for given
hardware core calculation configuration and is in-
dependent of the input dataset size. Datasets are
divided into parts which are processed by the mod-
ule. Different modules configurations for CORE-
PHIDM use:

– 21 562 Logical Elements (LE) with 1 instance of
subCORE module,

– 33 234 Logical Elements (LE) with 2 instances
of subCORE module,

– 45 668 Logical Elements (LE) with 4 instances
of subCORE module.

There are 113 600 Logical Elements (LE) available
in Startix III FPGA. These numbers also include re-
sources consumed by NIOS II processor.

Figure 3 presents a graphs showing the rela-
tionship between the number of objects and execu-
tion time for hardware and software solutions using
different configurations of subCORE modules for
CORE-PHIDM algorithm. Both axes have the log-
arithmic scale.

Figure 3. Relationship between number of objects
and calculation time for hardware and software
implementation of CORE-PHIDM for different

subCORE module configurations

Presented results show big increase in the speed
of data processing for all presented solutions. Hard-
ware module execution time compared to the soft-
ware implementation using row-by-row discernibil-
ity matrix calculation (algorithm CORE-PHIDM)
is 5 (1 instance of subCORE module) to 37 (4 in-
stances of subCORE module) times faster. If we
take clock speed difference between PC and FPGA
under consideration, these results are much better –
average speed-up factor is 378 (1 instance) to 2 376
(4 instances). Speed-up factor is almost constant
for given configuration of subCORE module and is
similar for all sizes of processed datasets.

Hardware processing times for given algorithm
for both datasets are the same – it doesn’t mat-
ter what is the width in bits of single object from
dataset, unless it fits in assumed memory boundary.
Hardware processing unit takes the same time to
finish the calculation for every object size, because
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it always performs the same type of operation. This
is true for all configurations of presented hardware
core calculation modules.

It should be noted, that average speed-up factor
related to number of instances of core calculation
module for CORE-PHIDM is not linear and is equal
to:

– 1.634 for configuration of 2 instances of core
calculation module,

– 2.827 for configuration of 4 instances of core
calculation module.

Decreasing speed-up factor is realted to NIOS II
processor overhead needed for binary data copying
to RAMn memories what needs increasing time for
this operation.

Let comparison of attribute value between two
objects or retrieving the element from discernibility
matrix be an elementary operation. k denotes num-
ber of conditional attributes, n is the number of ob-
jects in decision table and p is number of subCORE
module instances. Computational complexity of
software implementation for the core calculation
using CORE-PHIDM algorithm is Θ(kn2). Using
hardware implementation, complexity of core cal-
culation is Θ(n2

p ). The k is missing in hardware im-
plementation, because presented solutions perform
comparison between all attributes in Θ(1) - all at-
tributes values between two objects are compared in
single clock cycle. Additionally, core module per-
forms comparisons between many objects at time.
In most cases k << n, while p << k, so we can
say, that computational complexity for software and
hardware implementations are the same.

5 Conclusions and Future Re-
search

Hardware parallel implementation of a core cal-
culation algorithm gives us a big acceleration in
comparison to a software solution. This approach
is the main direction of using scalable decision sys-
tems in solutions demanding results of calculations
in a short time.

Core hardware calculation units were not opti-
mized for performance. Processing time can be sub-
stantially reduced by increasing FPGA clock fre-

quency and by introducing triggering on both clock
edges. The hardware solution presented in this pa-
per is easily scalable. Multiplying core calculation
blocks improved the processing speed. Currently,
4 parallel units occupy only about 50% of a pretty
small FPGA.

Further research will focus on checking differ-
ent sizes of modules, optimizing the modules for
performance as well as optimizing the data trans-
fer between the decision table and core calculation
units.

The type of processed data must also be taken
into consideration. The presented solution is suit-
able for consistent datasets. This approach doesn’t
handle databases with missing values properly. In
recent years increasing the popularity of systems
dealing with incomplete information is gaining pop-
ularity. The algorithm and its implementation
should be modified for processing this type of data.
Examples of such an approach for software solu-
tions can be found in e.g. [26].
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Core hardware calculation units were not opti-
mized for performance. Processing time can be sub-
stantially reduced by increasing FPGA clock fre-

quency and by introducing triggering on both clock
edges. The hardware solution presented in this pa-
per is easily scalable. Multiplying core calculation
blocks improved the processing speed. Currently,
4 parallel units occupy only about 50% of a pretty
small FPGA.

Further research will focus on checking differ-
ent sizes of modules, optimizing the modules for
performance as well as optimizing the data trans-
fer between the decision table and core calculation
units.

The type of processed data must also be taken
into consideration. The presented solution is suit-
able for consistent datasets. This approach doesn’t
handle databases with missing values properly. In
recent years increasing the popularity of systems
dealing with incomplete information is gaining pop-
ularity. The algorithm and its implementation
should be modified for processing this type of data.
Examples of such an approach for software solu-
tions can be found in e.g. [26].
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[5] Grześ T., Kopczyński M. Hardware Implementa-
tion on Field Programmable Gate Array of Two-
Stage Algorithm for Rough Set Reduct Generation.
In Lecture Notes in Computer Science, Publisher:
Springer, 2019, Vol. 11499, pp. 495-506.

[6] Y. Liang, L. Lu and J. Xie, OMNI: A Framework
for Integrating Hardware and Software Optimiza-
tions for Sparse CNNs in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, doi: 10.1109/TCAD.2020.3023903.

[7] Z. -N. Li, C. Zhu, Y. -L. Gao, Z. -K. Wang and J.
Wang, AlphaGo Policy Network: A DCNN Accel-
erator on FPGA in IEEE Access, doi: 10.1109/AC-
CESS.2020.3023739.

[8] Kanasugi, A.; Yokoyama, A. A basic design for
rough set processor. In Proceedings of the 15th An-
nual Conference of Japanese Society for Artificial
Intelligence, 2001.
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tributes values between two objects are compared in
single clock cycle. Additionally, core module per-
forms comparisons between many objects at time.
In most cases k << n, while p << k, so we can
say, that computational complexity for software and
hardware implementations are the same.
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edges. The hardware solution presented in this pa-
per is easily scalable. Multiplying core calculation
blocks improved the processing speed. Currently,
4 parallel units occupy only about 50% of a pretty
small FPGA.

Further research will focus on checking differ-
ent sizes of modules, optimizing the modules for
performance as well as optimizing the data trans-
fer between the decision table and core calculation
units.

The type of processed data must also be taken
into consideration. The presented solution is suit-
able for consistent datasets. This approach doesn’t
handle databases with missing values properly. In
recent years increasing the popularity of systems
dealing with incomplete information is gaining pop-
ularity. The algorithm and its implementation
should be modified for processing this type of data.
Examples of such an approach for software solu-
tions can be found in e.g. [26].
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