PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and simulation of a gold concentrator plant implementing a dissolution loop method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mineral processing applications increasingly use recycled water to preserve freshwater natural resources and comply with environmental regulations. However, accumulating anions, cations, and reagents in the process water may affect plant flotation performance and production continuity. Therefore, many cost actions may be needed to mitigate the recycled water effects. Typically, the process water properties and their effects on flotation performance are unknown for a greenfield project. Often, the result is an over-scaling up of the process plant with an additional financial cost. The experimental methodology in the paper focuses on creating water for testing that is closer to the actual process water during the comminution and flotation process for any greenfield project. The scope of the study consists of creating possible process water, conducting flotation experiments, and simulation. In order to validate the dissolution loop method, refractory gold flotation plant conditions were selected in our Finland laboratory. The simulation results of dissolution loop flotation kinetics were compared with the actual plant mass balance. According to the comparative results, the process water created by the dissolution loop method has the same physical and chemical properties as the actual process water at the site except for SO4 -concentration. Moreover, comparing the simulation results of the experimental data and plant mass balance studies shows that the gold grade and recovery results in the simulation were lower than the actual plant mass balance.
Rocznik
Strony
art. no. 166377
Opis fizyczny
Bibliogr. 16 poz., fot., rys., tab., wykr.
Twórcy
  • Metso Outotec Research Center, 28100, Pori, Satakunta, Finland
  • Metso Outotec Research Center, 28100, Pori, Satakunta, Finland
autor
  • Metso Outotec Research Center, 28100, Pori, Satakunta, Finland
  • Metso Outotec Research Center, 28100, Pori, Satakunta, Finland
autor
  • Metso Outotec Research Center, 28100, Pori, Satakunta, Finland
autor
  • Metso Outotec Research Center, 28100, Pori, Satakunta, Finland
  • Metso Outotec Research Center, 28100, Pori, Satakunta, Finland
  • Metso Outotec Research Center, 28100, Pori, Satakunta, Finland
  • Dragon Mining Oy, Satakunta, Sastamala, Finland
  • Dragon Mining Oy, Satakunta, Sastamala, Finland
Bibliografia
  • CASTRO, S. 2018. Physico-chemical factors in the flotation of Cu-Mo-Fe ores with seawater: A critical review. Physicochem. Probl. Miner. Process., 54(4), 1123-1236.
  • CHEN, J.M., LIU, R.Q., SUN, W., QIU, G.Z., 2009. Effect of mineral processing wastewater on flotation of sulfide minerals. Trans. Nonferrous Met. Soc. China (English Ed.) 19, 454–457. https://doi.org/10.1016/S1003-6326(08)60294-0
  • DRAGON MINING, 2021. Vammala production center pp.1 taken from: https://www.dragonmining.com/ vammala-production-centre/.
  • DUNNE, R., 2005. Flotation of gold and gold-bearing ores, Editor(s): Mike D. Adams, B.A. Wills, Developments in Mineral Processing, Elsevier, 15, 309-344
  • GOOGLE EARTH, 2022. The image shot was taken from the google earth software link: https://www.google.com/maps/place/Dragon+Mining+Oy/@61.3270709,23.0496148,17z/data=!3m1!4b1!4m5!3m4!1s0x468ecb5a50e3818d:0xbfe34bea80bf0cdc!8m2!3d61.3270392!4d23.0516849.
  • ITERAMS 2020. ITERAMS Project in a Nutshell, pp.1 taken from: http://www.iterams.eu/Home/ TheProjectInANutShell/.
  • LE, T. M., SCHREITHOFER, N., & DAHL, O., 2020. Dissolution Test Protocol for Estimating Water Quality Changes in Minerals Processing Plants Operation with Closed Water Circulation. Minerals, 18.
  • LIANG, G., ZHAO, Q., LIU, B., DU, Z., XIA, X., 2021. Treatment and reuse of process water with high suspended solids in low-grade iron ore dressing. J. Clean. Prod., 278, 123493
  • LIU, R., QIN, W., JIAO, F., WANG, X., GONG, M., YANG, Y., PEI, B., LAI, C., 2016. Enhanced flotation of refractory gold ore by using sulfur-oil agglomeration with (NH4)2S2O3 as a regulator in the weak acidic pulp. Miner. Eng., 93, 24–31.
  • LIU, W., MORAN, C., VINK, S., 2013. A review of the effect of water quality on flotation. Minerals Engineering. 53. 91–100.
  • METSO OUTOTEC, 2021. Mining and Metal Refining, carrying out process audits, pp.2 taken from: https://www.mogroup.com/insights/blog/mining-and-metals/flotation-process-audit-and-bottleneck-identification/.
  • MHONDE, N., JOHANSSON, L-S., CORIN, K., SCHREITHOFER, N., 2021. The Effect of Tetrathionate Ions on the Surface Chemistry and Flotation Response of Selected Sulphide Minerals, Mineral Processing, and Extractive Metallurgy Review, 42(8), 1000-1013.
  • OZTURK, Y., BIÇAK, Ö., ÖZDEMIR, E., EKMEKÇI, Z., 2018. Mitigation negative effects of thiosulfate on flotation performance of Cu-Pb-Zn sulfide ore, Minerals Engineering, 122, 142-147.
  • RAO, S.R., 2011. Resource Recovery and Recycling from Metallurgical Wastes. Waste Management. Elsevier Science Ltd., Waste Management Series 7, pp. 473–475, ISBN-13: 9780080463209.
  • SINCHE-GONZALEZ, M., FORNASIERO, D., ZANIN, M., 2016. Flotation of chalcopyrite and molybdenite in the presence of organics in water. Minerals, 6(4), 105.
  • SINCHE-GONZALEZ, M., FORNASIERO, D., Understanding the effect of sulfate in mining-process water on sulfide flotation, Minerals Engineering, 165, 106865.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34386942-e99a-46db-b17e-78c5b966c0d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.