Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Organic waste comes from various sources, such as food or vegetable waste and animal manurequickly decomposes in nature, but it significantly impacts the environment and human health, with methane (CH4) and carbon dioxide (CO2) from organic waste contributing to global warming, and further harming the environment. This study aims to determine the optimal substrate composition of organic waste from vegetable and cow manure for generating electricity using an integrated anaerobic digestion (AD) and microbial fuel cells (MFCs) system. The experiment used portable biodigester-MFCs systems for households and was conducted for eight weeks. Four biodigester reactors using different ratios of vegetable waste to cow manure were applied: R1 (100%:0%), R2 (75%:25%), R3 (50%:50%), and R4 (0%:100%). The result shows the highest electrical voltage in the third reactor (R3), registering at 0.62 mV, consisting of 50% cow manure and 50% vegetable waste. The highest biogas yield (13,192 ml) comes from the second reactor (R2), with a composition of 25% cow manure and 75% vegetable waste. The addition of cow manure to vegetable waste enhanced electricity production through CH4production in an anaerobic digestion process. Based on the above result, substrate composition and ratios are needed to influence the optimum pH and temperature to optimise the metabolic activity of bacteria in portable MFCs efficiently. Among the four biodigester tested, R2, with a 75% vegetable waste to 25% cow manure ratio, achieved the highest biogas yield of 13.192 ml and highest CH4content. Conversely, R4, comprising 100% cow manure, produced the smallest biogas volume but achieved the highest CH4. These findings highlight the significant role of cow manure in biogas production and the challenges of utilising vegetable and organic waste effectively.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
379--391
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
- Department of Environmental Science, Universitas Islam Negeri Raden Mas Said Surakarta, Jl. Pandawa Pucangan Kartasura, Sukoharjo, Indonesia
autor
- Department of Environmental Science, Universitas Islam Negeri Raden Mas Said Surakarta, Jl. Pandawa Pucangan Kartasura, Sukoharjo, Indonesia
autor
- Department of Environmental Science, Universitas Islam Negeri Raden Mas Said Surakarta, Jl. Pandawa Pucangan Kartasura, Sukoharjo, Indonesia
Bibliografia
- 1. Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290). https://doi.org/10.1016/j.ejpe.2018.07.003
- 2. Amigun, B., Parawira, W., & Musango, J. K. (2008). Anaerobic Biogas Generation for Rural Area Energy Provision in Africa. https://doi.org/10.5772/32630
- 3. Andriamanohiarisoamanana, F. J., Saikawa, A., Kan, T., Qi, G., Pan, Z., Yamashiro, T., Iwasaki, M., Ihara, I., Nishida, T., & Umetsu, K. (2018). Semi-continuous anaerobic co-digestion of dairy manure, meat and bone meal and crude glycerol: Process performance and digestate valorization. Renewable Energy, 128, 1–8. https://doi.org/10.1016/j.renene.2018.05.056
- 4. Andriani, D., Rajani, A., Kusnadi, Santosa, A., Saepudin, A., Wresta, A., & Atmaja, T. D. (2020). A review on biogas purification through hydrogen sulphide removal. IOP Conference Series: Earth and Environmental Science, 483(1), 12034. https://doi.org/10.1088/1755-1315/483/1/012034
- 5. Bajracharya, S. (2020). Microbial fuel cell coupled with anaerobic treatment processes for wastewater treatment. Integrated Microbial Fuel Cells for Wastewater Treatment, 2020, 295–311. https://doi.org/10.1016/B978-0-12-817493-7.00014-X.
- 6. Balagurusamy, N., & Chandel, A. K. (2020). Biogas Production. From Anaerobic Digestion to a Sustainable Bioenergy Industry. https://doi.org/10.1007/978-3-030-58827-4
- 7. Beniche, I., Hungría, J., El Bari, H., Siles, J. A., Chica, A. F., & Martín, M. A. (2021). Effects of C/N ratio on anaerobic co-digestion of cabbage, cauliflower, and restaurant food waste. Biomass Conversion and Biorefinery, 11(5), 2133–2145. https://doi.org/10.1007/s13399-020-00733-x
- 8. BPS. (2019). Kajian Lingkungan Hidup: Kualitas Lingkungan Hidup Perkotaan (Vol. 3305010, Issue 04320.1901). Badan Pusat Statistik.
- 9. BPS. (2020). Statistik Lingkungan Hidup Indonesia Air dan Lingkungan. Badan Pusat Statistik.
- 10. BPS. (2023a). Indikator Tujuan Pembangunan Berkelanjutan Indonesia 2023. Badan Pusat Statistik.
- 11. BPS. (2023b). Kota Surakarta Dalam Angka 2023. Badan Pusat Statistik Kota Surakarta.
- 12. Dankawu, U. M., Usman, F. M., Musa, I. M., Safana, A. A., Ndikilar, C. E., Shuaibu, H. Y., Yakubu, A., Uzair, M., Lariski, F. M., Silikwa, N. W., & Ahmadu, M. (2022). Assessment of biogas production from mixtures of poultry waste and cow manure. Dutse Journal of Pure and Applied Sciences, 8(1b), 138–145. https://doi.org/10.4314/dujopas.v8i1b.16
- 13. Dasti, Z. A., Ahmed, I., & Sarwar, S. (2021). Monitoring & assessment of N2O, NOX emissions from fertilizer plant (Nitrit acid) for the environmental sustainability. Pakistan Journal of Science, 73(1), 120–129. https://doi.org/10.57041/pjs.v73i1.651
- 14. Du, Z., Li, H., & Gu, T. (2007). A state-of-the-art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004
- 15. Eseohe, A. O., Oji, A., & Da-silva, A. (2022). Monitoring of produced biogas volume and composition from co-digestion of Cow- dung and organic-kitchen-waste. GSC Advanced Research and Reviews, 13(1), 133–141. https://doi.org/10.30574/4/ gscarr.2022.13.1.0265
- 16. Fang, W., Huang, Y., Ding, Y., Qi, G., Liu, Y., & Bi, J. (2022). Health risks of odorous compounds during the whole process of municipal solid waste collection and treatment in China. Environment International, 158, 106951. https://doi.org/10.1016/j. envint.2021.106951
- 17. Frankowski, J., & Czekała, W. (2023). Agricultural Plant Residues as Potential Co-Substrates for Biogas Production. Energies, 16(11), 4396. https://doi.org/10.3390/en16114396
- 18. García-Depraect, O., Martínez-Mendoza, L. J., Diaz, I., & Muñoz, R. (2022). Two-stage anaerobic digestion of food waste: Enhanced bioenergy production rate by steering lactate-type fermentation during hydrolysis-acidogenesis. Bioresource Technology, 358, 127358. https://doi.org/10.1016/j. biortech.2022.127358
- 19. Guo, H., Li, Q., Wang, L., Chen, Q., Hu, H., Cheng, D., & He, J. (2022). Semi-solid state promotes the methane production during anaerobic co-digestion of chicken manure with corn straw comparison to wet and high-solid state. Journal of Environmental Management, 316, 115264. https://doi.org/10.1016/j.jenvman.2022.115264
- 20. Hadin, Å., & Eriksson, O. (2016). Horse manure as feedstock for anaerobic digestion. Waste Management, 56, 506–518. https://doi.org/10.1016/j. wasman.2016.06.023
- 21. Hilkiah Igoni, A., Ayotamuno, M. J., Eze, C. L., Ogaji, S. O. T., & Probert, S. D. (2008). Designs of anaerobic digesters for producing biogas from municipal solid-waste. Applied Energy, 85(6), 430–438. https://doi.org/10.1016/j.apenergy.2007.07.013
- 22. Hilmi, N. A. M., Zakarya, I. A., Gunny, A. A. N., Izhar, T. N. T., Zaaba, S. K., Samah, M. F., Daud, Z. A. A. M., & Beson, M. R. C. (2023). Co-digestion of food waste with cow manure by anaerobic digestion for biogas production. Co-digestion of food waste with cow manure by anaerobic digestion for biogas production. IOP Conference Series: Earth and Environmental Science, 1135. https://doi.org/10.1088/1755-1315/1135/1/012034
- 23. Jafar, R., & Awad, A. (2021). State and development of anaerobic technology for biogas production in Syria. Cleaner Engineering and Technology, 5, 100253. https://doi.org/10.1016/j.clet.2021.100253
- 24. Juntupally, S., Begum, S., & Arelli, V. (2024). Microbial coculture to enhance biogas production. In Biogas to Biomethane. LTD. https://doi.org/10.1016/B978-0-443-18479-6.00011-9
- 25. Kaza, S., Yao, L., Bhada-Tata, P., & Woerden, F. Van. (2018). What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050. Urban Development Series. World Bank Group.
- 26. Khan, M. D., Khan, N., Sultana, S., Joshi, R., Ahmed, S., Yu, E., Scott, K., Ahmad, A., & Khan, M. Z. (2017). Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochemistry, 57, 141–158. https://doi.org/10.1016/j.procbio.2017.04.001
- 27. Kumar, S., Binti, F., Zain, S., & Kumar, B. (2019). The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresource Technology Reports, 8(July), 100310. https://doi.org/10.1016/j.biteb.2019.100310
- 28. Leytem, A. B., Bjorneberg, D. L., Koehn, A. C., Moraes, L. E., Kebreab, E., & Dungan, R. S. (2017). Methane emissions from dairy lagoons in the western United States. Journal of Dairy Science, 100(8), 6785–6803. https://doi.org/10.3168/jds.2017-12777
- 29. Leytem, A. B., Dungan, R. S., Bjorneberg, D. L., & Koehn, A. C. (2011). Emissions of Ammonia, Methane, Carbon Dioxide, and Nitrous Oxide from Dairy Cattle Housing and Manure Management Systems. Journal of Environmental Quality, 40, 1383–1394. https://doi.org/10.2134/jeq2009.0515
- 30. Liu, J., Zhan, L., Wang, Q., Wu, M., Ye, W., Zhang, J., Li, Y., Wen, J., & Chen, L. (2022). Distribution and Driving Mechanism of N2 O in Sea Ice and Its Underlying Seawater during Arctic Melt Season. Water (Switzerland), 14(2), 145. https://doi.org/10.3390/w14020145
- 31. Mu, D., Horowitz, N., Casey, M., & Jones, K. (2017). Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S. Waste Management, 59, 476– 486. https://doi.org/10.1016/j.wasman.2016.10.026
- 32. Mukhuba, M., Roopnarain, A., Moeletsi, M. E., & Adeleke, R. (2020). Metagenomic insights into the microbial community and biogas production pattern during anaerobic digestion of cow manure and mixed food waste. Journal of Chemical Technology and Biotechnology, 95(1), 151–162. https://doi.org/10.1002/jctb.6217
- 33. Mulbry, W., & Ahn, H. (2014). Greenhouse gas emissions during composting of dairy manure: Influence of the timing of pile mixing on total emissions. Biosystems Engineering, 126, 117–122. https://doi.org/10.1016/j.biosystemseng.2014.08.003
- 34. Obileke, K., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021). Electrochemistry Communications Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003. https://doi.org/10.1016/j.elecom.2021.107003
- 35. Oliveira, V. B., Simões, M., Melo, L. F., & Pinto, A. M. F. R. (2013). Overview on the developments of microbial fuel cells. Biochemical Engineering Journal, 73, 53–64. https://doi.org/10.1016/j.bej.2013.01.012
- 36. Owen, J. J., & Silver, W. L. (2015). Greenhouse gas emissions from dairy manure management: A review of field-based studies. Global Change Biology, 21, 550–565. https://doi.org/10.1111/gcb.12687
- 37. Pasvadoglou, E., Kourtidis, G., Mamolos, A., Menexes, G., Papatheodorou, E., & Giannopoulos, G. (2023). Combined application of urea and cow manure results in similar cumulative N2O emissions relative to conventional fertilization, in two types of soil. Copernicus Meetings.
- 38. Prasad, R. K. (2023). The Implementation of Waste Biomass Substrates as Feedstock for The Production of Bio-Electricity Through Microbial Fuel Cells (MFCS): A Short Review. International Journal of Biomass and Renewables, 12(2), 13–24. https://doi.org/10.61762/ijbrvol12iss2art24517
- 39. Purwono, P., Hermawan, H., & Hadiyanto, H. (2015). Penggunaan Teknologi Reaktor Microbial Fuel Cells (Mfcs) Dalam Pengolahan Limbah Cair Industri Tahu Untuk Menghasilkan Energi Listrik. Jurnal Presipitasi: Media Komunikasi Dan Pengembangan Teknik Lingkungan, 12(2), 57. https://doi.org/10.14710/presipitasi.v12i2.57-65
- 40. R, M., Soeroso, F., Pradana, S. A., Utomo, S., & Wardhana, I. W. (2016). Pengaruh Pengenceran Dan Pengadukan Terhadap Produksi Biogas Pada Anaerobic Digestion Dengan Menggunakan Ekstrak Rumen Sapi Sebagai Starter Dan Limbah Dapur Sebagai Substrat. Jurnal Presipitasi: Media Komunikasi Dan Pengembangan Teknik Lingkungan, 13(2), 88. https://doi.org/10.14710/presipitasi.v13i2.88-93
- 41. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S.-E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756. https://doi.org/10.1016/j.aej.2015.03.031
- 42. Ramatsa, I. M., Akinlabi, E. T., Madyira, D. M., & Huberts, R. (2014). Design of the bio-digester for biogas production: A review. Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II. WCECS 2014, 22-24 October, 2014, San Francisco, USA.
- 43. Rismani-Yazdi, H., Christy, A. D., Dehority, B. A., Morrison, M., Yu, Z., & Tuovinen, O. H. (2007). Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnology and Bioengineering, 97(6). 1398-1407. https://doi.org/10.1002/bit.21366
- 44. Saggar, S., Bolan, N. S., Bhandral, R., Hedley, C. B., & Luo, J. (2004). A review of emissions of methane, ammonia, and nitrous oxide from animal excreta deposition and farm effluent application in grazed pastures. New Zealand Journal of Agricultural Research, 47, 513–544. https://doi.org/10.1080/0028 8233.2004.9513618
- 45. Saha, S. S., & Mondal, Md. I. H. (2023). Production and Kinetic Study of biogas formation from cow manure and utilization of biogas effluent as bio-fertilizer. Asian Journal of Chemical Sciences, 13(1), 56–64. https://doi.org/10.9734/ajocs/2023/ v13i1233
- 46. Sarangi, U. (2023). Impact of Climate Change on Global Ecosystem and SDGs. International Journal of New Economics and Social Sciences, 1(17), 49–71. https://doi.org/10.5604/01.3001.0053.9604
- 47. Schiffman, S. S., & Williams, C. M. (2005). Science of Odor as a Potential Health Issue. Journal of Environmental Qualityuality, 34(1), 129–138. https://doi.org/10.2134/jeq2005.0129a
- 48. Scott, K., & Yu, E. H. (2015). Microbial Electrochemical and Fuel Cells: Fundamentals and Applications. In: Microbial Electrochemical and Fuel Cells: Fundamentals and Applications. https://doi.org/10.1016/C2014-0-01767-4
- 49. Scott, S. L., McSpirit, S., Breheny, P., & Howell, B. M. (2012). The long-term effects of a coal waste disaster on social trust in Appalachian Kentucky. Organization and Environment, 25(4), 402–418. https://doi.org/10.1177/1086026612467983
- 50. Shah, A. A., Seehar, T. H., Sharma, K., & Toor, S. S. (2022). Chapter 7 - Biomass pretreatment technologies (S. K. Maity, K. Gayen, & T. K. B. T.-H. B. Bhowmick, Eds.; pp. 203–228). Elsevier. https://doi.org/10.1016/B978-0-12-823306-1.00014-5
- 51. Shen, L., Guan, Y., Wu, G., & Zhan, X. (2014). N2O emission from a sequencing batch reactor for biological N and P removal from wastewater. Frontiers of Environmental Science and Engineering, 8(5), 776–783. https://doi.org/10.1007/ s11783-013-0586-0
- 52. SIPSN-KLHK. (2023). Sistem Informasi Pengelolaan Sampah Nasional (SIPSN).
- 53. Stegenta-Dąbrowska, S., Drabczyński, G., Sobieraj, K., Koziel, J. A., & Białowiec, A. (2019). The biotic and abiotic carbon monoxide formation during aerobic co-digestion of dairy cattle manure with green waste and sawdust. Frontiers in Bioengineering and Biotechnology, 7, 283. https://doi.org/10.3389/ fbioe.2019.00283
- 54. Stenström, F., Baresel, C., & La Cour Jansen, J. (2013). Nitrous oxide production under varied C/N-ratio and DO in an SBR treating digester supernatant. 13th Nordic Wastewater Treatment Conference (NORDIWA2013).
- 55. Taylor, P., Li, R., Chen, S., & Li, X. (2009). Anaerobic co-digestion of kitchen waste and cattle manure for methane production anaerobic co-digestion of kitchen waste and cattle manure for methane production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31, 1845–1856. https://doi.org/10.1080/15567030802606038
- 56. Thakur, H., Ira, R., Kumar, N., & Sharma, V. (2023). Environmental Technology & Innovation Anaerobic co-digestion of food waste, bio-flocculated sewage sludge, and cow manure in CSTR using E(C2)Tx synthetic consortia. Environmental Technology & Innovation, 32, 103263. https://doi.org/10.1016/j. eti.2023.103263
- 57. Torbira, M. S., & Saturday, E. G. (2021). Biogas production from cow manures using a modified fixed-dome digester. Global Journal of Engineering and Technology Advances, 7(3), 224–230. https://doi.org/10.30574/gjeta.2021.7.3.0066
- 58. Vasantha, T., & Jyothi, N. V. V. (2020). Green Technologies for Wastewater Treatment. Springer. https://doi.org/10.1007/978-3-030-16427-0_9
- 59. Viswanath, P., Devi, S. S., & Nand, K. (1992). Anaerobic Digestion of Fruit and Vegetable Processing Wastes for Biogas Production. Bioresource Technology, 40, 43–48. https://doi.org/10.1016/0960-8524(92)90117-G
- 60. Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012). Optimizing feeding composition and carbon – nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology, 120, 78–83. https://doi.org/10.1016/j. biortech.2012.06.058
- 61. Wassmann, R., Neue, H., Lantin, R. S., Buendia, L. V, & Rennenberg, H. (2000). Characterization of methane emissions from rice fields in Asia. I . Comparison among field sites in five countries. In: Methane Emissions from Major Rice Ecosystems in Asia.
- 62. Yan, X., Zheng, J., Han, Y., Liu, J., & Sun, J. (2017). Effect of influent C/N ratio on N2O emissions from anaerobic/anoxic/oxic biological nitrogen removal processes. Environmental Science and Pollution Research, 24(30), 23714–23724. https://doi.org/10.1007/s11356-017-0019-x
- 63. Zhang, Y. (2012). Energy Recovery from Waste Streams with Microbial Fuel Cell (MFC)-based Technologies. In: Technical University of Denmark (Issue September).
- 64. Zhao, Y., Sun, F., Yu, J., Cai, Y., Luo, X., Cui, Z., Hu, Y., & Wang, X. (2018). Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation. Bioresource Technology, 269, 143–152. https://doi.org/10.1016/j.biortech.2018.08.040
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3434a486-4c1f-4812-a677-b8f84cb6d803
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.