PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conductive polymer based nanocomposite membranes for biomedical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to examine composite membranes obtained by means of phase inversion from a synthetic stable polymer – polyvinylidene difluoride (PVDF). The piezoelectric polymer was modified with 0.5-1wt% addition of commercial carbon fillers: graphite oxide (GO, 1wt%), multiwalled carbon nanotubes (CNT, 1wt%) and functionalized nanotubes (CNT-COOH, 0.5wt%). The membranes were obtained by solidification of nanocomposite solutions in coagulation bath (CH3OH). The obtained series of materials differed in surface porosity (P), electric conductivity (σ) and surface free energy (SFE). It was proved that presence of carbon nanoadditive influenced microstructure of the membranes: the mean size of pores in the membrane rose in the following order: GO→CNT→CNT-COOH. The very same system depicted the influence of the filler on the membrane structure: the increase in membrane crystallinity (λ) and the β phase share (FT Raman). From all the examined nanocomposite systems, the PVDF modified with 0.5wt% CNT-COOH displayed the most advantageous electric properties. These nanocomposite membrane (PVDF/CNT-COOH) could be used as a low-voltage electrodes in biomedical application. Yet, taking into account the other physicochemical, mechanical and structural properties, the membranes modified with 1wt% CNT and 1wt% GO were also interesting.
Rocznik
Strony
2--7
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr., zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, al. Mickiewicza 30, 30-059 Krakow
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Silicates Chemistry, al. Mickiewicza 30, 30-059 Krakow
Bibliografia
  • [1] Thomas P.S., Abdullateef A.A., Al-Harthi M.A., Atieh M.A., De S.K., Rahaman M. et al.: Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. M J Mater Sci, 47 (2012) 3344-3349.
  • [2] Feng C., Jiang L.: Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)-polymer nanocomposites. Compos Part A 47 (2013) 143-149.
  • [3] Wu J., Chung D.D.L.: Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers. Carbon 40 (2002) 445-467.
  • [4] Cao M., Wang X., Cao W., Yuan J.: Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3 (2015) 6589-6599.
  • [5] Zhang X., Liang G., Chang J., Gu A., Yuan L., Zhang W.: The origin of the electric and dielectric behavior of expanded graphite- -carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss. Carbon 50 (2012) 4995-5007.
  • [6] Chung D.D.L.: Electromagnetic interference shielding effectiveness of carbon materials. Review, Carbon 39 (2001) 279-285.
  • [7] Nayak L., Rahaman M., Khastgir D., Chaki T.K.: Thermal and electrical properties of carbon nanotubes based polysulfone nanocomposites. Polym Bull 67 (2011) 1029-1044.
  • [8] Verdejo R., Bernal M.M., Romasanta L.J., Lopez-Manchado M.A.: Graphene filled polymer nanocomposites. J Mater Chem 21 (2011) 3301-3310.
  • [9] Li B., Zhong W.H.: Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46 (2011) 5595-5614.
  • [10] Wan Y.J., Yang W.H., Yu S.H., Sun R., Wong C.P., Liao W.H.: Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos. Sci. Technol. 122 (2016) 27-35.
  • [11] Zhi X., Mao Y., Yu Z., Wen S., Li Y., Zhang L.: γ-Aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss. Compos Part A: Appl Sci Manuf 76 (2015) 194-202.
  • [12] Lin J.C., Tiong S.L., Chen C.Y.: Surface characterization and platelet adhesion studies on fluorocarbons prepared by plasma- -induced graft polymerization. J. Biomater. Sci. Polym. Ed. 11 (2000) 701-714.
  • [13] Yu Y., Sun H., Orbay H., Chen F., England C.G., Cai W., Wan X.: Biocompatibility and in vivo operation of implantable mesoporous pvdf-based nanogenerators. Nano Energy 27 (2016) 275-287.
  • [14] Spasova M., Manolova N., Markova N., Rashkov I.: Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and anti-biofouling properties. App. Surf. Sci. 363 (2016) 363-371.
  • [15] Martins J.N., Bassani T.S., Barra G.M., Oliveira R.V.B.: Electrical and rheological percolation in poly(vinylidene fluoride)/multi- -walled carbon nanotube nanocomposites. Polym. Int. 60 (2011) 430-435.
  • [16] Chiu F.C., Yeh S.C.: Comparison of PVDF/MWNT, PMMA/ MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties. Polym. Test. 45 (2015) 114-123.
  • [17] Chiu F.C., Chen Y.J.: Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Compos. Part A: Appl. Sci. Manuf. 68 (2015) 62-71.
  • [18] Chiu F.C.: Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with organoclay and/or multi-walled carbon nanotubes. Mater. Chem. Phys. 143 (2014) 681-692.
  • [19] Siemionow M., Brzezicki G.: Current techniques and concepts in peripheral nerve repair. International Review of Neurobiology 87 (2009) 141-172.
  • [20] Xiaosong Gu, Fei Ding, Yumin Yang, Jie Liu: Peripheral nerve regeneration. Prog. Neurobiol. 93 (2011) 204-230.
  • [21] Kijeńska E., Prabhakaran M.P., Swieszkowski W., Kurzydlowski K.J., Ramakrishna S.: Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J Biomed Mater Res B Appl Biomater. 100 (2012) 1093-1102.
  • [22] Kucharska M., Niekraszewicz A., Kardas I.: Developing a model of peripheral nerve graft based on natural polymers. Fibres Text. East. Eur. 96 (2012) 107-120.
  • [23] Van Vlierberghe S., Dubruel P., Schacht E.: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review, Biomacromoleculs 12 (2011) 1387-1408.
  • [24] Kulicki M., Jethon J.: Aktualne sposoby rekonstrukcji niewielkich ubytków nerwów dłoniowych wspólnych i właściwych, Postępy Nauk Medycznych 9 (2009) 673-677.
  • [25] Deumens R., Bozkurt A., Meek M.F.: Repairing injured peripheral nerves: Bridging the gap. Prog. Neurobiol. 92 (2010) 245-267.
  • [26] Gordon T., Gordon K.: Nerve regeneration in the peripheral nervous system versus the central nervous system and the relevance to speech and hearing after nerve injuries. J Commun Disord 43 (2010) 274-285.
  • [27] Asensio-Pinilla E., Udina E.: Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exper. Neurol. 219 (2009) 258-265.
  • [28] Young T.H., Hu W.W.: Covalent bonding of lysine to EVAL membrane surface to improve survival of cultured cerebellar granule neurons. Biomaterials 24 (2003) 1477-1486.
  • [29] Lin D.J., Lin D.T., Young T.H., Huang F.M., Chen C.C., Cheng L.P.: Immobilization of heparin on PVDF membranes with microporous structures. J. Membr. Sci. 245 (2004) 137-146.
  • [30] Young T.H., Lu J.N., Lin D.J., Chang C.L., Chang H.H., Cheng L.P.: Immobilization of L-lysine on dense and porous poly(vinylidene fluoride) surfaces for neuron culture. Desalination 234 (2008)134-143.
  • [31] Mago G., Fisher F.T.: Membranes of polyvinylidene fluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation. J Nanomater. (2008) ID 759825
  • [32] Bottino A., Camera-Roda G., Capannelli G., Munari S.: The formation of microporous polyvinylidene difluoride membranes by phase separation. J. Membr. Sci. 57 (1991) 1-20.
  • [33] Yeow M.L., Liu Y.T., Li K.: Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. J. Appl. Polym. Sci. 92 (2004) 1782-1789.
  • [34] Kehoe S., Zhang X.F., Boyd D.: FDA approved guidance conduit and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, Int. J. Care Injured 43 (2012) 553-572.
  • [35] Zhao C., Xu X.: Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 1 (2013) 349-354.
  • [36] Cunha C., Panseri S., Antonini S.: Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomed. Nanotechnol. Biol. Med. 7 (2011) 50-59.
  • [37] Ferreira A., Rocha J.G., Ansón-Casaos A., Martínez M.T., Vaz F., Lanceros-Mendez S.: Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sens. Actuators 178 (2012) 10-16.
  • [38] Xingyi H., Pingkai J., Choung K., Fei L., Yi Y.: Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). Eur. Polym. J. 45 (2009) 377-386.
  • [39] Ke K., Wang Y., Yang M.B.: Crystallization and reinforcement of poly (vinylidene fluoride) nanocomposites: Role of high molecular weight resin and carbon nanotubes. Polym. Test 31 (2012) 117-126.
  • [40] Veitmann M., Chapron D., Bizet S., Devisme S., Guilment J., Royaud I., Poncot M., Bourson P.: Thermal behavior of PVDF/ PMMA blends by differential scanning calorimetry and vibrational spectroscopies (Raman and Fourier-Transform Infrared). Polym. Test. 48 (2015) 120-124.
  • [41] Huanga L., Lu C., Wang F., Donga X.: Piezoelectric property of PVDF/graphene composite films using 1H, 1H, 2H, 2H-Per fluorooctyltriethoxysilane as a modifying agent. J. Alloys Compd. 688 (2016) 885-892.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-342a221c-71d9-48ae-8427-cf61fe9c0e1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.