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ABSTRACT

The paper analyzes existing in situ methods of fish target-strength estimation with speciał emphasis on an
indirect method that utiłizes statistical manipulation on a backscattered acoustic echoes set. The inverse
problem in question requires finding the unknown probability density distribution (PDF) of target
strength in the logarithmic "domain" or PDF of a backscattering cross-section in the "domain" of absołute
variabłes. These PDFs can be estimated by solving the so called "single-target single-beam integral
equation", relating distributions of echo variable, target strength and beam pattem of the echo sounder
transducer. In the presented analysis special attention is given to four newly developed TS-estimation
methods, viz.: Expectation, Maximization and Smoothing (EMS), Discrete "MeIJin Deconvolution",
Windowed Singular Value Decomposition (WSVD) and Regularization. These methods use more
sophisticated estimation techniques than conventional deconvolution and related methods. A comparison
of the resulting estimates obtained from the analyzed methods (using simulations as well as real data from
acoustic surveys) eoneludes the paper.

l. INTRODUCTION

To assess fish abundance from acoustic
surveys, a target strength (TS) or back-scattering
cross-section (abs) of individual fish must be
known to properly scale an echo integration
output [8],[16],[28]. Therefore, reliable
estimates of the average fish target strength are
indispensable to convert echo integration data to
absolute estimates of fish density and hence
population estimates. Also, these TS estimates
are required to assess sampled volumes in echo
counting techniques [14]. Moreover, variations
in mean TS are thought to be among the
dominant sources of non-survey errors in
acoustic population estimates derived from echo
integration whose accuracy and precision are
mostly determined by the performance of mean
target strength estimates [16].

TS estimation methods can be classified
into three principal groups [9]:
(i) theoretical;
(ii) ex situ measures on dead or alive fish under

controlled (experimental) conditions;
(iii) in situ measures on free-swimming fish in

their natural habitat.
A search of the literature suggested

[9],[ 10],[26] that TS data obtained from the
theoretical and ex situ methods may in many
cases be not reliable and consistent with in situ
results as many factors are likely to influence
fish targ et strength (migration, aspect, behaviors,
physiological state) and may differ from time to
time and place to place. Due to these reasons, the
measurement of fish TS in situ, wherever
possible, was thought to be the most reliable and
optimal TS estimation strategy [6],[12].
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As it is known, in situ methods of TS
measurement require removing the effect of the
unknown random location of fish in the acoustic
beam b(9,q> ) - i.e. removing the so called beam
pattern factor[6]. This can be realized either
directly from each individual echo, or indirectly
by processing a collection of individual echoes.
Direct methods are generally more complex and
costly than indirect techniques because they
require a special configuration of the transducer
providing multiple beam (dual-bearn, ar split-
beam) and multi-channel echo sounder receiver
[6],[21 ],[27].

Indirect techniques are attractive because
they can be implemented with the same single-
beam, and single-channel echo sounder as used
for routine echo integration surveys, but they
require knowledge of the transducer's beam
pattern and assume uniform distribution of fish
in a sampled volume that might be often not the
case [6],[9]. Indirect methods can be either
parametric - using a TS probability distribution
function (PDF) with relatively few parameters,
or non-pararnetric - in which the number of
estimates equals the number of observations.

2. SURVEY OF EXISTING INDIRECT 'IN
SITU' TS-ESTIMATION METHODS

Commonly researches credit Craig and
Forbes [4] for the formulation of the statisticaI
inverse treatment for estimating fish target
strength by statistical correction of the measured
echo level PDF to the target strength PDF, using
directivity PDF - represented by circular areas
covered by cross-sections of the beam pattern.
The proposed method is a non-parametrio
method in the logarithmic, or dB, domain and
uses a set of linear equations, the solution of
which gives the required estimate of TS
distribution. The estimates obtained by the Craig-
Forbes method are in general worse than those
from other methods (particularly for bimodal
distributions) and are strongly dependent on the
actual TS distributions [6],[26].

The next method was developed by
Ehrenberg [6], who formulated the inverse
problem of TS estimation in terms of a Volterra
integral equation of the ' first kind and used an
nth-degree polynomial approximation to solve it
for the unknown back-scattering cross-section
PDF. The unknown polynomial coefficients were
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evaluated simultaneously by a least square fit.
The drawback of the method is its ability to
generate ill-conditioned simultaneous equations
for the higher degree polynomials that make it
difficult to obtain accurate estimates of TS
distribution.

Robinson [23] modified the Ehrenberg
estimation technique by subdividing the p(abs)
estimate space into a number of sub-intervals and
fits low order polynomials (of n < 3) to the
unknown back-scattering cross-section
distribution. The polynomial coefficients were
determined as in the Ehrenberg method by least
squares. For the actuaI PDFs with a larger
standard deviation (> 2.5 dB) the simultaneous
equations to be solved may become ill-
conditioned, as in the Ehrenberg method that
may result in underestimating the mean target
strength [23]. Robinson also found that higher
amplitude thresholds cause a more positive bias
in TS and that moda l artifacts are possible with
his method due to fitting multiple cubics.

Parametric methods were introduced by
Petersen and Clay [3] and further modified by
Ehrenberg [7]. Petersen and Clay used the
Rayleigh PDF to model the unknown distribution
p(abs) and integrated the integral equation with
respect to the beam pattern factor. The Rayleigh
PDF was justified by theoretical reasons (central
limit theorem) and the param eter was fit by least
squares. The technique adjusts the unknown
parameter in the Rayleigh distribution until this
theoretical PDF for the echo amplitudes and
measured histogram most closely agreed. The
advantage of assuming a particular distribution
for abs is that it should be easier to estimate a
parameter of an underlying PDF than it is to
estimate the entire PDF. However, these
techniques should only be employed when
Rayleigh-distributed on-axis pressure envelope
hold. Ehrenberg [7] also used the Rayleigh
distribution and an incomplete gamma function
technique to express an acoustic integrai
equation. He also derived a generał expression
for the beam pattern factor PDF, and noted that
the Rayleigh assumption is only valid for fish
length to a wavelength ratio greater than 25. Clay
and Heist [3] found that a rwo-parameter Rice
PDF was justified and that fish activity and
length both condition the Rice parameters.



Lindem [15] modified the Craig & Forbes
method by setting all negative estimates to zero.
He correlated fish length with modes in the
indirect estimates.

Clay [2] forrnulated the Craig &.Forbes
method in terrns of deconvolution of PDFs. The
single-beam" integral equation was first

formulared in term s ofvoltage and converted to a
convolution integral by a change of variabIes.
The .numerical deconvolution has been
implemented using the Z-transform polynomial
long division. Clay showed a correspondence
between acoustic modes and fish species groups
and advised that the technique was useful to
estimate any acoustic size PDF. However, the
deconvolution of actual data demonstrates
oscillations and drifts in the results, especially
for smali echo amplitudes and low signal-to-
noise ratio [2].

Miinalainen and Eronen [18] used a least-
squares method but concluded that the use. of
non- negative least-squares for deconvolution
was ton time intensive and subject to noise.
Instead they used a modified singular value
decomposition (SVD) routine in which all
negative values in the solution we re converted to
zero s [12].

Rudstam et al. [24] and Jacobson et al. [13]
used Clay's deconvolution with Rice PDFs fitted
a posteriori to the estimation of fish target
strength and density. The use of Rician PDF is
questionable because bumpiness in deconvolved
data could be artifactual, but not the result of a
combination of Ricians (fitted for fish size
groups) [12]. These artifactual modes are
inherent to all deconvolution techniques and may
be treated as a result of undersampling of data.
On the other hand, a posteriori techniques and
parametric techniques presume knowledge ?f the
fish seattering model which may not be available,
Therefore parametric methods can be over-
constrained by the target strength PDF model and
so are not robust.

In generał, although conventional
deconvolution techniques can suffer from modal
artifacts, if large sample sizes are provided, they
offer better estimates as negative values of
estimates are then largely avoided.

3. ANALYSIS OF NEWLY DEVELOPED
INDIRECT TS-ESTIMA TlON METHODS

The recently developed target strength
estimation methods are in generał more complex
and more sophisticated than deconvolution and
other conventional techniques, but by this cost
they partly avoid the problems of ill-conditioned
equations and related prob1ems with a matrix
inversion. For instance, to avoid ill-conditioning
a Singular Value Decomposition (SVD) method
replaces inverse matrix by pseudoinverse, which
eigen values, if too smali, are replaced by zeros
[20].

In addition, some of these methods , viz.: a
subcłass of iterative techniques which consists of
Expectation, Maximization and Smoothing
(EMS) and Maximum Entropy Regularization
(MER) methods allow avoiding negative-valued
solutions of a discrete form of a "single-target
integral equation" by superimposing proper
constraints on solutions obtained by iterations
[12], [11],[20].

The most promising among these state-of-
the-art methods which are subject of further
analysis and comparison are:
- Discrete Mellin Transform (DMT) method

[19],[20],
- Expectation, Maximization and Smoothing

(EMS) method [12],[25],
- Windowed Singular Value Decomposition

(WSVD) method [20],[11],
- Tichonow Regularization method [30J,
- Maximum Entropy Regularization [11],[20]

3.1. DISCRETE MELLIN TRANSFORM

Estimation of the backscattering cross-
section aBS from fish echoes requires a
computation of the probability distribution
function (PDF) which for the produet of two
random variables Z = x y may be expressed by

a "single-target integral equation"[ 19]:

f,(z) = r f)z/ x)fy(x)dx/ x (1)

which rewritten for acoustic variabies
(e = .JCi: b) comes down to a pair of equations:

p (z)= r1
Pr::-(z/x)Pb(x)dx/x (2a)

e Jo "aas
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p (z) = I"Pb(Z/ xip ,.-:-(x)dx/ x
e Jo "aBs

(2b)

which can be solved with the use of the Mellin
transform defined as [19]:

F (s) = M{f(t)} =rf(t)t'-ldt, (3a)

where s ::::a + j f3
l f<1+ t-f(t):::: M-l {F(s)}:::: -. . F(s)r'ds (3b)

27rJ <1-}~

In the domain of the Mellin transform, the
integral equation (1) takes the form of
transforms produet:

Fz(s) = Fx(s)Fy(s) (4)
which leads to the solution of the equation (1) in
the form:

f (x):::: M-1[M {f (z)] I M {f (Y»)Jl (5)x z y
Due to the analogy to the convolution integral
which for the Fourier transform corresponds to
the transforms produet, the integral equation (l)
was calIed the "Mellin convolution" which in the
domain ofthe PDF's can be written as:

fz(z) = fx(x) :fy(Y) = fo~f,(x)f/z / y)dx I x (6)

where the asterix symbol * marks the "Mellin
M

convolution" as defined above.
Numerical computations of Mellin transforms by
FFT algorithms [19] lead to a non-uniform
sampling of PDFs. The problem can be avoided
if we notice that the direct Mellin transform
resembles the formula for statistical moments of
PDF. Hence if f(x) represents the PDF of a
random variable taking positive values and the
complex variable s belongs to the set of natural
numbers S E {N}, then the Mellin transform
represents a series of moments of the random
v riable x.

, F(s) = fo~f(x)dx = m s-t (7)

and for s = l the value of the transform can be
treated as a moment of zero order of a
normalized distribution function ftx):
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F(1) = foi(x)dx = 1= mo
In the case of discrete random variabies, the

system of equations can be generalized by
introducing a discrete Mellin transform (DMT)
which on the real positive semi-axis represents a
sampled continuos Mellin transform. Hence we
have:

F(n) = I:lxr1f(xJ (8)

On the other hand, the same moments of the
random variabie x can be computed with the use

of the mean value estimator for realization of the
random variable:

Ą l:LN
"m =:- X i

n N 1=1

Considering the formuła (5) and treating the
moments as discrete Mellin transforms, we
obtain the relation which links the moments of
the three variabIes in consideration:

(9)

m. = mz (10)
my

where m, represents a series of moments of the
measured echo amplitude ("off-axis" voltage)
which can be computed using the estimates given
in the equations (9). The series m y represents

moments of the beam pattern PDF, and can be
obtained with the use of the DMT. The result of
dividing the above moments gives the first
solution stage, that is knowledge of the series
mx of moments of the unknown backscattering
cross-section ("on-axis" voltage).

Fig. 1 iliustrates the described concept of
using the Discrete Mellin Transform along with
statistical moments of the back-scattering cross-
section random variable as applied to the
estimation of its PDF. The presented two-
dimensional plot of DMT on a complex pIane
s = ex + j~ refers to the Rayleigh distribution of
the parameter (J = 0.5. Note that the zero-order
and first order moments of the considered PDF
are represented by sampies of the DMT plot at
ex = 1 and ex = 2.
In the second (inverse) stage we reconstruct the
unknown PDF from moments which at the same
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time constitutes a problem of defining the inverse
Mellin transform. Considering the definition of
moments of the discrete random variable:

mn = I.:Ix; P(xi) (11)

this problem requires solving Vandermode's
matrix:

r l Px(xJ =«.lx:
X2 X3 Xm P, (x2) m1,x

2 2 2 r, (x3) m2.x
(12)XI X2 Xl Xm =

X;
n

X
n n r, (Xm) Lmn.xX2 3 Xm

in which:
m, - moments estimates ofunknown PDF's,
x, ~predicted centers of the histogram bins,
Px (x,') - estimates of unknown PDF' s.
The above matrix equation is ill conditioned
because the matrix on the left side of the
equation in generally does not have to be a
square matrix, and both, the Gaussian
elimination method and the LU decomposition
give incorrect solutions [19]. One method of
solving this problem is application of the
singular value decomposition svn which leads
to obtaining a pseudo-inverse matrix that

guarantees a solution with a minimum mean-
square error [17]. By rewriting the equation (12)
in the generał matrix form:

Xp ==m (13)
we can get the solution

p=X#m (14)

where matrix X# is a pseudo-inverse matrix
computed numerically using the SVD algorithm:

X==usvT ==[U)diag(wj)[VT
]

x' = US-1yT = [U]diag(1 / wj)[ yT]
(15)

in which the matrices U, V are orthonormal, and
the diagonal matrix S represents the singular
values of matrix X. The equation (14)
represents simultaneously the matrix form of an
inverse Discrete Mellin Transform, optimal in
the sense of minimizing the mean-square error.

Fig. 2 shows the simulation result of testing
the performance of DMT[ 19]. In this experiment
the Rayleigh pseudo-random generated
histogram was used as an estimate of the
backscattering cross-section PDF. Function
[, obtained as the result of the "Mellin
convolution" contains visible effects of the
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inverse Mellin transform calculated with the use
of a pseudo-inverse matrix. On the other hand,
the last figure showing a reconstruction of the

original PDP shows the smoothing character of
the operation.

fx tyb(Q)
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Figure 2. Reconstruction ofthe PDP from a Rayleigh random variable using the Discrete Mellin
Transform and SVO with a matrix pseudo-inversion.

3.2. EXPECTATION, MAXIMIZATION AND
SMOOTHING (EMS)

Expectation-Maximization-smoothing is a
modification of the EM method [25) which
smoothes or filters highly variable estimates
from what should otherwise be a smooth result. It
is applied for the first time to estimate the scaled
POP of the "on-axis" voltages, fs(s) in equation
(l) from which fish target strength is determined.
In addition, the EMS method constrains
estimates to be positive and reduces the time
needed to converge by smoothing groups of
estimates per iteration.

To apply EMS method the "single-target"
integrai equation (1) is transformed toa
convolution:

fv (v) = I fs (x) fs (y-x) dx (16)
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where v = Vmax e-Y(y = In vmax - In v),
Vmax somewhat larger than the largest measured
v, b = e-x (x = -In b),
dx = -l/b dB
We introduce a scal ar ~ to account for the
physical reality of an abundance of targets, as we
did in the EMS methodology [25]:

~fv (v) = f fs (x) ~ fs (y-x) dx (17)

The integrai can be approximated by the
convolution sum to numerically obtain the
solution:

~fv (j) = I fs (i) ~ fs (j-i) ~ (18)

where the indices i and j correspond to bins in X
and y space respectively.
The equation (18) can be interpreted as a linear
equation and can be presented in a matrix form:



y=Kx

where:
K - kernel matrix of equation,
y - observed data,
x - unknown function.

Every iteration procedure performed during
solution when using EMS method consists of
three steps: calłed respectively: expectation,
maximization and smoothing.

First step - estimates the statistics of y(x) as
a conditional expectation:

y'"' = E(YIt,Ylj ,x;"' ) (19)

where (n) denotes n-th iteration.
Second step - takes the estimated data to

calculate maximum likelihood estimates as a
solution ofthe following equation:

E(Yijlx) = y(n) (20)

The last step in every iteration - smoothes
solution x using Gaussian kernel with localły
weighted end points. The smooting proces s
centers the kernel at each data point:

(n') _ "S (n)
X -~ ijx (21 )

j

where S - smoothing matrix.
Finally, assuming Poisson PDF of random
variable related to observable y we received
equation describing first two step s in a form [12]:

(n-l) (yl \
(n) X I

X =" K x(n-l) KT K)
~!J

(22)

3.3. REGULARIZATION METHOD
Linear inverse problems can be treated as a

reconstruction of an unknown functionf()
(target strength PDF) out of the observed
function y() (echo PDF). Thus, the single-target
integral equation can be presented in the form of
a Iinear operator equation:

y(u) = (K f)(u) + n(u) (23)

where:
K is the linear operator,
n represents stochastic or deterministic noise.

One way to solve this problem is to apply square
regularization introduced simultaneously in 1962
by Tichonow, Phillips and Twomey [30].
According to this method the solution estimate
can be obtained as [30]:

f
Ą

= (KoK +..1,1)-1 K*y (24)

where lis the identity matrix.
Alternatively one can use .iterative back-

projection [29]:

fo = j1 K* Y

fi =fo+j1K*(y-Kfo)
(25)

l.: = im + JlK*(y- Kim)
where }"and u are regularization parameters.
What needs to be observed is that computation of
the presented iterative sequence does not require
matrixes to be inverted which in ill conditioned
cases constitutes a major problem. The key issue
here is an optimal selection of regularization
parameters in both methods.

A variation of this method which introduces
a tri-diagonal matrix as a AJ stabilizer was used
in the experimentaI part of this paper. The
advantage of this rnodification is the possibility
of an additional regulation of the solution's
behavior in boundary areas. The soIution for the
considered case is obtained as follows ..

Regularization of the convolution integraI
equation ofthe first kind (in TS domain)

is to reach the second kind equation by adding to
the right hand side of the so calIed regulator that
depends on the parameter A. and the unknown
function fx and its derivative. Introducing a
functional that determines the error in space L2

one should determine fx(x) by minimizing this
functional that leads to Euler's equation.
The solution of this equation can be determined
by substituting the integration with discrete
summation and obtaining the following equation:

(26)

where K is the matrix of the transformation
kemel formed from the convolution vector h ,
K' conjugate matrix,
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C stabilizer matrix in the form:

(27)

oCli c12

C21 C22 c23

c32

o
where:

2
Ci i = 1+2' i = 2 ..n - l, h = l - sampling step;, h

l
CU_I = cj_l,i = -11' i = 2..n

The matrix of stabilizer C is a tri-diagonal matrix
because when computing the derivative the
difference version was used which gives the
relation between the following, current and
previous index in vector Ix . At the same time
boundary conditions define the value of the first
and last element of the main diagonal.

In the context of target strength the estimate
of PDF can be written down in the matrix form:

P7:> = (P;PB + Ą Cr1p;PE (28)
where:
Pl:> vector of the estimate of target strength
PDF
Pe matrix of echo PDF
Pe' transpose of a matrix Pe
Ą - regularization parameter
C matrix of regularization stabilizer
PE vector of echo distribution

3.4. DECONVOLUTION USING SINGULAR
VALUE DECOMPOSITION
Singular value decomposition (SVD) has

become a standard method of solving ill
conditioned Iinear equations. Extensive
description of the problems related to the SVD
theory is related to spectral analysis [17]. Below
we used only parts of the theory that can be
applied to the solution of inverse problems. Let
11.112 represent a norm in space L] and [,]

represent a scal ar product. If K* K is a linear
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operator, then (ev (t») represents its eigen

functions, k; singular values and h; (u) a
normalized transform
h; (u) = (Ke; )(u) IIIKevll.

If none of the singular values is a zero value then
the reconstruction formuła has the following
form:

(29)
v

In the case when singular values of the K* K
operator approximate zero, it is necessary to
introduce weights 50 that dividing by elements
close to zero does not impact the stability of the
solution. By adequate introductions of the
weights, we obtain the 50 called WSVD
(Windowed SVD) which gives the reconstruction

rule: (30)

As an example, the simplest selection of weights
is to assume Wv = 1 for smali indexes v and

w v = O for large V which reflects the name
assigned to this method. Other approaches are
possible as well [1]. What is also worth noticing
is that if we select w, = k; I (k; + A), then we
obtain the regularization method presented in the
previous paragraph in the direct form and when
Wv = (1- (1- J..Lk;)m) we obtain the method of

iterative reconstruction (m-num ber of iteration).
By using the form of the Penrose-Moore pseudo-
inverse matrix A# as an inverse matrix obtained
in the SVD technique, we obtain a formuła for
target strength PDF estimate:

(31 )

4. COMPARISON OF TS-ESTIMATION
METHODS

Comparison of the results (TS
histograms) obtained from the analyzed
estimation methods is presented in Fig. 3.
Data were acquired from acoustic surveys
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Figure 3. Cornparison of various target strength PDF estimation methods in logarithmic domain
(upper part) and in absolute variable dornain (lower part)

on salmon populations in Lake Washighton. As
it is easily seen the EMS and Maximum Entropy
Regularization methods givc smoothed estirnates
(by iterations). WSVD produces artifactual

modes, but on the other hand it gives much faster
numerical solution.
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To conclude this chapter some revision of
target strength estimation methods cłassification
schemes as introduced by Foote [9] is proposed
in order to include the newły devełoped state-of-
the-art methods discussed in this paper. The
primary changes refer to: (1) the płacement of
MER (maximum entropy regularization) along
with EMS method, labeled by the author as
iterative methods in a logarithmic domain,
(2) addition of the DMT method to the voltage

domain and (3) addition of the WSVD
(windowed singular value decomposition)
method to matrix inversion as a subclass. Other
minor changes follow in generał Hedgepeth [12]
suggestions and include the addition of the
voltage domain, the inclusion of Craig-Forbes
and deconvolution in the same sub-section, and
the possibility of fitting the Rice PDP In
parametric estimation (as opposed to a
posteriori):

rabie 1. Revised classification scheme of target strength estimation methods
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